In Delay Tolerant Networks (DTNs), some routing algorithms ignore that most nodes are selfish, i.e., nodes are willing to use their own resources to forward messages to nodes with whom they have a relationship. In v...In Delay Tolerant Networks (DTNs), some routing algorithms ignore that most nodes are selfish, i.e., nodes are willing to use their own resources to forward messages to nodes with whom they have a relationship. In view of this phenomenon, we propose a routing algorithm based on Geographic Information and Node Selfishness (GINS). To choose a forwarding node, GINS combines nodes' willingness to forward and their geographic information to maximize the possibility of contacting the destination. GINS formulates the message forwarding process as a 0-1 Knapsack Problem with Assignment Restrictions to satisfy node demands for selfishness. Extensive simulations were conducted, and results show that GINS can achieve a high delivery ratio and a lower hop count compared with GRONE and LPHU. Furthermore, its overhead ratio is 25% and 30% less than that of GRONE and LPHU, respectively.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61502261,61572457,and 61379132)the Science and Technology Plan Project for Colleges and Universities o Shandong Province(No.J14LN85)
文摘In Delay Tolerant Networks (DTNs), some routing algorithms ignore that most nodes are selfish, i.e., nodes are willing to use their own resources to forward messages to nodes with whom they have a relationship. In view of this phenomenon, we propose a routing algorithm based on Geographic Information and Node Selfishness (GINS). To choose a forwarding node, GINS combines nodes' willingness to forward and their geographic information to maximize the possibility of contacting the destination. GINS formulates the message forwarding process as a 0-1 Knapsack Problem with Assignment Restrictions to satisfy node demands for selfishness. Extensive simulations were conducted, and results show that GINS can achieve a high delivery ratio and a lower hop count compared with GRONE and LPHU. Furthermore, its overhead ratio is 25% and 30% less than that of GRONE and LPHU, respectively.