Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea...Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.展开更多
The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie...The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.展开更多
Dear Editor,This letter contributes to designing a resilient event-triggered controller for connected automated vehicles under cyber attacks,including denial-of-service(DoS)and deception attacks.To characterize the ef...Dear Editor,This letter contributes to designing a resilient event-triggered controller for connected automated vehicles under cyber attacks,including denial-of-service(DoS)and deception attacks.To characterize the effect of DoS attacks,the effective intervals of the attack are redivided based on the sampling period.展开更多
Synthetic aperture radars(SARs)encounter the azimuth cutoff problem when observing sea waves.Consequently,SARs can only capture the waves with wavelengths larger than the cutoff wavelength and lose the information of ...Synthetic aperture radars(SARs)encounter the azimuth cutoff problem when observing sea waves.Consequently,SARs can only capture the waves with wavelengths larger than the cutoff wavelength and lose the information of waves with smaller wavelengths.To increase the accuracy of SAR wave observations,this paper investigates an azimuth cutoff compensation method based on the simulated multiview SAR wave synchronization data obtained by the collaborative observation via networked satellites.Based on the simulated data and the equivalent multiview measured data from Sentinel-1 virtual networking,the method is verified and the cutoff wavelengths decrease by 16.40%and 14.00%.The biases of the inversion significant wave height with true values decrease by 0.04 m and 0.14 m,and the biases of the mean wave period decrease by 0.17 s and 0.22 s,respectively.These results demonstrate the effectiveness of the azimuth cutoff compensation method.Based on the azimuth cutoff compensation method,the multisatellite SAR networking mode for wave observations are discussed.The highest compensation effect is obtained when the combination of azimuth angle is(95°,115°,135°),the orbital intersection angle is(50°,50°),and three or four satellites are used.The study of the multisatellite networking mode in this paper can provide valuable references for the compensation of azimuth cutoff and the observation of waves by a multisatellite network.展开更多
Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vu...Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.展开更多
Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was ...Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.展开更多
The globalization of hardware designs and supply chains,as well as the integration of third-party intellectual property(IP)cores,has led to an increased focus from malicious attackers on computing hardware.However,exi...The globalization of hardware designs and supply chains,as well as the integration of third-party intellectual property(IP)cores,has led to an increased focus from malicious attackers on computing hardware.However,existing defense or detection approaches often require additional circuitry to perform security verification,and are thus constrained by time and resource limitations.Considering the scale of actual engineering tasks and tight project schedules,it is usually difficult to implement designs for all modules in field programmable gate array(FPGA)circuits.Some studies have pointed out that the failure of key modules tends to cause greater damage to the network.Therefore,under limited conditions,priority protection designs need to be made on key modules to improve protection efficiency.We have conducted research on FPGA designs including single FPGA systems and multi-FPGA systems,to identify key modules in FPGA systems.For the single FPGA designs,considering the topological structure,network characteristics,and directionality of FPGA designs,we propose a node importance evaluationmethod based on the technique for order preference by similarity to an ideal solution(TOPSIS)method.Then,for the multi-FPGA designs,considering the influence of nodes in intra-layer and inter-layers,they are constructed into the interdependent network,and we propose a method based on connection strength to identify the important modules.Finally,we conduct empirical research using actual FPGA designs as examples.The results indicate that compared to other traditional indexes,node importance indexes proposed for different designs can better characterize the importance of nodes.展开更多
This paper investigates the distributed adaptive platoon tracking problem of third-order heterogeneous vehicles subject to model uncertainties. The design process is divided into two steps. Firstly, an adaptive tracki...This paper investigates the distributed adaptive platoon tracking problem of third-order heterogeneous vehicles subject to model uncertainties. The design process is divided into two steps. Firstly, an adaptive tracking controller is designed for the dynamic leading vehicle. And then, the distributed adaptive controllers are established for followers. Moreover, the predictor technique is used to improve the estimate performance of the adaptive law, and the total disturbance is approximated and compensated by the variable gain nonlinear extended state observers(NESOs) driven by the estimation error. By introducing the variable gain hyperbolic tangent tracking differentiator(HTTD), the “complexity explosion” problem is avoided. The feasibility and effectiveness of the proposed protocol are verified by simulation tests.展开更多
A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level...A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level, communication-economic control scheme is presented for multiple-bus microgrids with each bus having multiple distributed generators(DGs) connected in parallel. The control objective of the upper level is to calculate the voltage references for one-bus subsystems. The objectives of the lower control level are to make the subsystems' bus voltages track the voltage references and to enhance load current sharing accuracy among the local DGs. Firstly, a distributed consensusbased power sharing algorithm is introduced to determine the power generations of the subsystems. Secondly, a discrete-time droop equation is used to adjust subsystem frequencies for voltage reference calculations. Finally, a Lyapunov-based decentralized control algorithm is designed for bus voltage regulation and proportional load current sharing. Extensive simulation studies with microgrid models of different levels of detail are performed to demonstrate the merits of the proposed control scheme.展开更多
Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinn...Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinning systems that produce such fibers are highly energy efficient,inspiring researchers to mimic these processes to realize robust artificial spinning.Significant developments have been achieved in recent years toward the preparation of high-performance bio-based fibers.Beyond excellent mechanical properties,bio-based fibers can be functionalized with a series of new features,thus expanding their sophisticated applications in smart textiles,electronic sensors,and biomedical engineering.Here,recent progress in the construction of bio-based fibers is outlined.Various bioinspired spinning methods,strengthening strategies for mechanically strong fibers,and the diverse applications of these fibers are discussed.Moreover,challenges in reproducing the mechanical performance of natural systems and understanding their dynamic spinning process are presented.Finally,a perspective on the development of biological fibers is given.展开更多
A single-bus DC microgrid can represent a wide range of applications. Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DG...A single-bus DC microgrid can represent a wide range of applications. Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DGs) under various operating conditions. This paper presents a novel decentralized control algorithm that can guarantee both the transient voltage control performance and realize the predefined load sharing percentages. First, the output-constrained control problem is transformed into an equivalent unconstrained one. Second, a two-step backstepping control algorithm is designed based on the transformed model for bus-voltage regulation. Since the overall control effort can be split proportionally and calculated with locally-measurable signals, decentralized load sharing can be realized. The control design requires neither accurate parameters of the output filters nor load measurement. The stability of the transformed systems under the proposed control algorithm can indirectly guarantee the transient bus voltage performance of the original system. Additionally, the high-performance control design is robust, flexible, and reliable. Switch-level simulations under both normal and fault operating conditions demonstrate the effectiveness of the proposed algorithm.展开更多
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ...This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.展开更多
Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is...Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is proposed and analyzed in this study.In this scheme,the interactions between selfish users and an operator are characterized as a Stackelberg game.Operator holds a large-scale ESS that is shared among users in the form of energy transactions.It sells energy to users and sets the selling price first.It maximizes its profit through optimal pricing and ESS dispatching.Users purchase some energy from operator for the reduction of their demand charges after operator's selling price is announced.This game-theoretic ESS sharing scheme is characterized and analyzed by formulating and solving a bi-level optimization model.The upper-level optimization maximizes operator's profit and the lower-level optimization minimizes users'costs.The bi-level model is transformed and linearized into a mixed-integer linear programming(MILP)model using the mathematical programming with equilibrium constraints(MPEC)method and model linearizing techniques.Case studies with actual data are carried out to explore the economic performances of the proposed ESS sharing scheme.展开更多
The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring f...The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.展开更多
In this paper,we propose a novel deep learning(DL)-based receiver design for orthogonal frequency division multiplexing(OFDM)systems.The entire process of channel estimation,equalization,and signal detection is replac...In this paper,we propose a novel deep learning(DL)-based receiver design for orthogonal frequency division multiplexing(OFDM)systems.The entire process of channel estimation,equalization,and signal detection is replaced by a neural network(NN),and hence,the detector is called a NN detector(N^(2)D).First,an OFDM signal model is established.We analyze both temporal and spectral characteristics of OFDM signals,which are the motivation for DL.Then,the generated data based on the simulation of channel statistics is used for offline training of bi-directional long short-term memory(Bi-LSTM)NN.Especially,a discriminator(F)is added to the input of Bi-LSTM NN to look for subcarrier transmission data with optimal channel gain(OCG),which can greatly improve the performance of the detector.Finally,the trained N^(2)D is used for online recovery of OFDM symbols.The performance of the proposed N^(2)D is analyzed theoretically in terms of bit error rate(BER)by Monte Carlo simulation under different parameter scenarios.The simulation results demonstrate that the BER of N^(2)D is obviously lower than other algorithms,especially at high signal-to-noise ratios(SNRs).Meanwhile,the proposed N^(2)D is robust to the fluctuation of parameter values.展开更多
The significant wave height(SWH)is one of the main parameters that describe wave characteristics and is widely used in wave research fields.Wave parameters measured by radar are influenced by the offshore distance and...The significant wave height(SWH)is one of the main parameters that describe wave characteristics and is widely used in wave research fields.Wave parameters measured by radar are influenced by the offshore distance and sea state.Validation and calibration are of great significance for radar data applications.The nadir beam of surface wave investigation and monitoring(SWIM)detects the global-ocean-surface SWH.To determine the product quality of SWIM SWH,this paper carried out time-space matching between SWIM and buoy data.The data qualities were evaluated under different offshore distances and sea states.An improved calibration method was proposed based on sea state segmentation,which considered the distribution of the point collocation numbers in various sea states.The results indicate that(1)the SWIM SWH accuracy at offshore distances greater than 50 km is higher than that at distances less than 50 km,with an root mean squared error(RMSE)of 0.2444 m,scatter index(SI)of 0.1156 and relative error(RE)of 9.97%at distances greater than 50 km and those of 0.4460 m,0.2230 and18.66%at distances less than 50 km.(2)SWIM SWH qualities are better in moderate and rough sea states with RMSEs of 0.2848 m and 0.3169 m but are worse in slight and very rough sea states.(3)The effect of the improved calibration method is superior to the traditional method in each sea state and overall data,and the RMSE of SWIM SWH is reduced from the raw 0.3135 m to 0.2859 m by the traditional method and 0.1982 m by the improved method.The influence of spatiotemporal window selection on data quality evaluation was analyzed in this paper.This paper provides references for SWIM SWH product applications.展开更多
I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for th...I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-展开更多
To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where...To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.展开更多
The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased si...The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications.展开更多
基金The project supported by Key Laboratory of Space Ocean Remote Sensing and Application,Ministry of Natural Resources under contract No.2023CFO016the National Natural Science Foundation of China under contract No.61931025+1 种基金the Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities under contract No.23CX04042A.
文摘Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.
基金supported by the Key R&D Program of Shandong Province, China (No. 2023ZLYS01)the National Natural Science Foundation of China (Nos. 91730304 and 41575026)+3 种基金the National Key Research and Development Plan Project (No. 2022 YFC3104200)the Major Innovation Special Project of Qilu University of Technology (Shandong Academy of Sciences) Science Education Industry Integration Pilot Project (No. 2023HYZX01)the ‘Taishan Scholars’ Construction Projectthe Special funds of Laoshan Laboratory
文摘The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.
基金supported in part by the National Natural Science Foundation of China(62203064,62203065,62303069)the Open Fund of Institute of Ocean Research of Bohai University(BDHYYJY2023017)。
文摘Dear Editor,This letter contributes to designing a resilient event-triggered controller for connected automated vehicles under cyber attacks,including denial-of-service(DoS)and deception attacks.To characterize the effect of DoS attacks,the effective intervals of the attack are redivided based on the sampling period.
基金the support of the National Natural Science Foundation of China(No.61931025)the National Key R&D Program of China(No.2017YFC1405600)。
文摘Synthetic aperture radars(SARs)encounter the azimuth cutoff problem when observing sea waves.Consequently,SARs can only capture the waves with wavelengths larger than the cutoff wavelength and lose the information of waves with smaller wavelengths.To increase the accuracy of SAR wave observations,this paper investigates an azimuth cutoff compensation method based on the simulated multiview SAR wave synchronization data obtained by the collaborative observation via networked satellites.Based on the simulated data and the equivalent multiview measured data from Sentinel-1 virtual networking,the method is verified and the cutoff wavelengths decrease by 16.40%and 14.00%.The biases of the inversion significant wave height with true values decrease by 0.04 m and 0.14 m,and the biases of the mean wave period decrease by 0.17 s and 0.22 s,respectively.These results demonstrate the effectiveness of the azimuth cutoff compensation method.Based on the azimuth cutoff compensation method,the multisatellite SAR networking mode for wave observations are discussed.The highest compensation effect is obtained when the combination of azimuth angle is(95°,115°,135°),the orbital intersection angle is(50°,50°),and three or four satellites are used.The study of the multisatellite networking mode in this paper can provide valuable references for the compensation of azimuth cutoff and the observation of waves by a multisatellite network.
基金Science and Technology Innovation 2030 Program(2018AAA0101605).
文摘Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.
基金Supported by the Key R&D Program of Shandong Province,China(No.2023ZLYS01)the National Key R&D Program of China(No.2022YFC3104200)+2 种基金the National Natural Science Foundation of China(No.12302301)the China Postdoctoral Science Foundation(No.2023M742229)the Zhejiang Provincial Natural Science Foundation(ZJNSF)(No.LQ22F030002)。
文摘Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.
基金supported by the Natural Science Foundation of China under Grant Nos.62362008,61973163,61972345,U1911401.
文摘The globalization of hardware designs and supply chains,as well as the integration of third-party intellectual property(IP)cores,has led to an increased focus from malicious attackers on computing hardware.However,existing defense or detection approaches often require additional circuitry to perform security verification,and are thus constrained by time and resource limitations.Considering the scale of actual engineering tasks and tight project schedules,it is usually difficult to implement designs for all modules in field programmable gate array(FPGA)circuits.Some studies have pointed out that the failure of key modules tends to cause greater damage to the network.Therefore,under limited conditions,priority protection designs need to be made on key modules to improve protection efficiency.We have conducted research on FPGA designs including single FPGA systems and multi-FPGA systems,to identify key modules in FPGA systems.For the single FPGA designs,considering the topological structure,network characteristics,and directionality of FPGA designs,we propose a node importance evaluationmethod based on the technique for order preference by similarity to an ideal solution(TOPSIS)method.Then,for the multi-FPGA designs,considering the influence of nodes in intra-layer and inter-layers,they are constructed into the interdependent network,and we propose a method based on connection strength to identify the important modules.Finally,we conduct empirical research using actual FPGA designs as examples.The results indicate that compared to other traditional indexes,node importance indexes proposed for different designs can better characterize the importance of nodes.
基金Supported by the Key R&D Program of Shandong Province,China(No.2023ZLYS01)the National Key R&D Program of China(No.2022YFC3104200)+1 种基金the National Natural Science Foundation of China(No.12302301)the Zhejiang Provincial Natural Science Foundation(ZJNSF)(No.LQ22F030002)。
基金supported by the National Natural Science Foundation of China(Grant Nos.62373208 and 62003097)the Taishan Scholar Program of Shandong Province of China(Grant No.tsqn202306218)the Talent Introduction and Cultivation Plan for Youth Innovation of Universities in Shandong Province。
文摘This paper investigates the distributed adaptive platoon tracking problem of third-order heterogeneous vehicles subject to model uncertainties. The design process is divided into two steps. Firstly, an adaptive tracking controller is designed for the dynamic leading vehicle. And then, the distributed adaptive controllers are established for followers. Moreover, the predictor technique is used to improve the estimate performance of the adaptive law, and the total disturbance is approximated and compensated by the variable gain nonlinear extended state observers(NESOs) driven by the estimation error. By introducing the variable gain hyperbolic tangent tracking differentiator(HTTD), the “complexity explosion” problem is avoided. The feasibility and effectiveness of the proposed protocol are verified by simulation tests.
基金supported in part by the US Office of Naval Research(N00014-16-1-312,N00014-18-1-2185)in part by the National Natural Science Foundation of China(61673347,U1609214,61751205)
文摘A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level, communication-economic control scheme is presented for multiple-bus microgrids with each bus having multiple distributed generators(DGs) connected in parallel. The control objective of the upper level is to calculate the voltage references for one-bus subsystems. The objectives of the lower control level are to make the subsystems' bus voltages track the voltage references and to enhance load current sharing accuracy among the local DGs. Firstly, a distributed consensusbased power sharing algorithm is introduced to determine the power generations of the subsystems. Secondly, a discrete-time droop equation is used to adjust subsystem frequencies for voltage reference calculations. Finally, a Lyapunov-based decentralized control algorithm is designed for bus voltage regulation and proportional load current sharing. Extensive simulation studies with microgrid models of different levels of detail are performed to demonstrate the merits of the proposed control scheme.
基金the National Key Research and Development Program of China(2017YFC1103900)the National Natural Science Foundation of China(22075244 and 51722306)+1 种基金Natural Science Foundation of Zhejiang Province(LZ22E030001)Shanxi-Zheda Institute of Advanced Materials and Chemical Engi-neering(2021SZ-TD009).
文摘Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinning systems that produce such fibers are highly energy efficient,inspiring researchers to mimic these processes to realize robust artificial spinning.Significant developments have been achieved in recent years toward the preparation of high-performance bio-based fibers.Beyond excellent mechanical properties,bio-based fibers can be functionalized with a series of new features,thus expanding their sophisticated applications in smart textiles,electronic sensors,and biomedical engineering.Here,recent progress in the construction of bio-based fibers is outlined.Various bioinspired spinning methods,strengthening strategies for mechanically strong fibers,and the diverse applications of these fibers are discussed.Moreover,challenges in reproducing the mechanical performance of natural systems and understanding their dynamic spinning process are presented.Finally,a perspective on the development of biological fibers is given.
基金supported in part by the U.S.Office of Naval Research(N00014-16-1-3121,N00014-18-1-2185)the National Natural Science Foundation of China(61673347,U1609214,61751205)
文摘A single-bus DC microgrid can represent a wide range of applications. Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators(DGs) under various operating conditions. This paper presents a novel decentralized control algorithm that can guarantee both the transient voltage control performance and realize the predefined load sharing percentages. First, the output-constrained control problem is transformed into an equivalent unconstrained one. Second, a two-step backstepping control algorithm is designed based on the transformed model for bus-voltage regulation. Since the overall control effort can be split proportionally and calculated with locally-measurable signals, decentralized load sharing can be realized. The control design requires neither accurate parameters of the output filters nor load measurement. The stability of the transformed systems under the proposed control algorithm can indirectly guarantee the transient bus voltage performance of the original system. Additionally, the high-performance control design is robust, flexible, and reliable. Switch-level simulations under both normal and fault operating conditions demonstrate the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(21076179)the National Basic Research Program of China(2012CB720500)
文摘This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.
基金supported by the National Natural Science Foundation of China(U21A20478)Zhejiang Provincial Nature Science Foundation of China(LZ21F030004)Key-Area Research and Development Program of Guangdong Province(2018B010107002)。
文摘Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is proposed and analyzed in this study.In this scheme,the interactions between selfish users and an operator are characterized as a Stackelberg game.Operator holds a large-scale ESS that is shared among users in the form of energy transactions.It sells energy to users and sets the selling price first.It maximizes its profit through optimal pricing and ESS dispatching.Users purchase some energy from operator for the reduction of their demand charges after operator's selling price is announced.This game-theoretic ESS sharing scheme is characterized and analyzed by formulating and solving a bi-level optimization model.The upper-level optimization maximizes operator's profit and the lower-level optimization minimizes users'costs.The bi-level model is transformed and linearized into a mixed-integer linear programming(MILP)model using the mathematical programming with equilibrium constraints(MPEC)method and model linearizing techniques.Case studies with actual data are carried out to explore the economic performances of the proposed ESS sharing scheme.
基金supported by the National Natural Science Foundation of China (61903326, 61933015)。
文摘The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.
基金supported in part by the National Natural Science Foundation of China No.62001220the Natural Science Foundation of Jiangsu Province BK20200440the Fundamental Research Funds for the Central Universities No.1004-YAH20016,No.NT2020009。
文摘In this paper,we propose a novel deep learning(DL)-based receiver design for orthogonal frequency division multiplexing(OFDM)systems.The entire process of channel estimation,equalization,and signal detection is replaced by a neural network(NN),and hence,the detector is called a NN detector(N^(2)D).First,an OFDM signal model is established.We analyze both temporal and spectral characteristics of OFDM signals,which are the motivation for DL.Then,the generated data based on the simulation of channel statistics is used for offline training of bi-directional long short-term memory(Bi-LSTM)NN.Especially,a discriminator(F)is added to the input of Bi-LSTM NN to look for subcarrier transmission data with optimal channel gain(OCG),which can greatly improve the performance of the detector.Finally,the trained N^(2)D is used for online recovery of OFDM symbols.The performance of the proposed N^(2)D is analyzed theoretically in terms of bit error rate(BER)by Monte Carlo simulation under different parameter scenarios.The simulation results demonstrate that the BER of N^(2)D is obviously lower than other algorithms,especially at high signal-to-noise ratios(SNRs).Meanwhile,the proposed N^(2)D is robust to the fluctuation of parameter values.
基金The National Key R&D Program of China under contract No.2017YFC1405600the National Natural Science Foundation of China under contract Nos 61931025,41974144 and 41976173+1 种基金the Graduate Innovation Project of China University of Petroleum(East China)under contract No.YCX2021124the Shandong Provincial Natural Science Foundation of China under contract No.ZR2019MD016。
文摘The significant wave height(SWH)is one of the main parameters that describe wave characteristics and is widely used in wave research fields.Wave parameters measured by radar are influenced by the offshore distance and sea state.Validation and calibration are of great significance for radar data applications.The nadir beam of surface wave investigation and monitoring(SWIM)detects the global-ocean-surface SWH.To determine the product quality of SWIM SWH,this paper carried out time-space matching between SWIM and buoy data.The data qualities were evaluated under different offshore distances and sea states.An improved calibration method was proposed based on sea state segmentation,which considered the distribution of the point collocation numbers in various sea states.The results indicate that(1)the SWIM SWH accuracy at offshore distances greater than 50 km is higher than that at distances less than 50 km,with an root mean squared error(RMSE)of 0.2444 m,scatter index(SI)of 0.1156 and relative error(RE)of 9.97%at distances greater than 50 km and those of 0.4460 m,0.2230 and18.66%at distances less than 50 km.(2)SWIM SWH qualities are better in moderate and rough sea states with RMSEs of 0.2848 m and 0.3169 m but are worse in slight and very rough sea states.(3)The effect of the improved calibration method is superior to the traditional method in each sea state and overall data,and the RMSE of SWIM SWH is reduced from the raw 0.3135 m to 0.2859 m by the traditional method and 0.1982 m by the improved method.The influence of spatiotemporal window selection on data quality evaluation was analyzed in this paper.This paper provides references for SWIM SWH product applications.
文摘I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61273088,10971120,and 61001099)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FM010)
文摘To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.
基金supported in part by the National Natural Science Foundation of China(NSFC)(92167106,61833014)Key Research and Development Program of Zhejiang Province(2022C01206)。
文摘The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications.