期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Finite-difference calculation of traveltimes based on rectangular grid 被引量:11
1
作者 李振春 刘玉莲 +2 位作者 张建磊 马在田 王华忠 《地震学报》 CSCD 北大核心 2004年第6期644-650,共7页
To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to... To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to improve calculating efficiency and adaptability, the calculation method of first-arrival traveltime of finite-difference is de- rived based on any rectangular grid and a local plane wavefront approximation. In addition, head waves and scat- tering waves are properly treated and shadow and caustic zones cannot be encountered, which appear in traditional ray-tracing. The testes of two simple models and the complex Marmousi model show that the method has higher accuracy and adaptability to complex structure with strong vertical and lateral velocity variation, and Kirchhoff prestack depth migration based on this method can basically achieve the position imaging effects of wave equation prestack depth migration in major structures and targets. Because of not taking account of the later arrivals energy, the effect of its amplitude preservation is worse than that by wave equation method, but its computing efficiency is higher than that by total Green′s function method and wave equation method. 展开更多
关键词 有限差分 程函方程 初至走时 矩形网格 Kirchhoff法叠前深度偏移 MARMOUSI模型
下载PDF
Alkaline diagenesis and its genetic mechanism in the Triassic coal measure strata in the Western Sichuan Foreland Basin,China 被引量:5
2
作者 Jiang Zaixing Qiu Longwei Chen Guiju 《Petroleum Science》 SCIE CAS CSCD 2009年第4期354-365,共12页
The reservoir of the upper Triassic Xujiahe Formation (T3x) in the Western Sichuan Foreland Basin is a set of terrigenous clastic rocks in an environment of coal measure sediments. Diagenesis greatly controls the phys... The reservoir of the upper Triassic Xujiahe Formation (T3x) in the Western Sichuan Foreland Basin is a set of terrigenous clastic rocks in an environment of coal measure sediments. Diagenesis greatly controls the physical properties of the reservoir through different responses of minerals to acidic and alkaline diagenetic environment. The dissolution of unstable components such as feldspar, rock fragments, carbonate cement, and clay minerals is the major source of secondary pores under acidic diagenesis, while the dissolution of quartz increases the reservoir space in the fault-fold zone of Longmen Mountain and Leikoupo paleo-hills. The dissolution of quartz is a result of cross-formation flow of fluid in the Himalaya epoch and the invasion of alkaline formation water from the Triassic Leikoupo and Jialingjiang formations through fault and fracture systems. In the vertical succession, acidic dissolution occurs at a shallow depth of less than 2,180 m, and alkaline dissolution occurs at a greater depth of more than 2,280 m. The reservoir space is formed by the influence of both acidic and alkaline dissolution in the depth interval of 2,180–2,280 m. 展开更多
关键词 Sichuan Basin upper Triassic alkaline diagenesis POROSITY genetic mechanism
下载PDF
Finite-difference calculation of traveltimes based on rectangular grid 被引量:2
3
作者 LI Zhen-chun(李振春) +7 位作者 LIU Yu-lian(刘玉莲) ZHANG Jian-lei(张建磊) MA Zai-tian(马在田) WANG Hua-zhong(王华忠) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第6期707-714,共8页
To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, t... To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to improve calculating efficiency and adaptability, the calculation method of first-arrival traveltime of finite-difference is de- rived based on any rectangular grid and a local plane wavefront approximation. In addition, head waves and scat- tering waves are properly treated and shadow and caustic zones cannot be encountered, which appear in traditional ray-tracing. The testes of two simple models and the complex Marmousi model show that the method has higher accuracy and adaptability to complex structure with strong vertical and lateral velocity variation, and Kirchhoff prestack depth migration based on this method can basically achieve the position imaging effects of wave equation prestack depth migration in major structures and targets. Because of not taking account of the later arrivals energy, the effect of its amplitude preservation is worse than that by wave equation method, but its computing efficiency is higher than that by total Green′s function method and wave equation method. 展开更多
关键词 FINITE-DIFFERENCE eikonal equation first-arrival traveltime rectangular grid Kirchhoff prestack depth migration Marmousi model
下载PDF
Migration velocity modeling based on common reflection surface gather
4
作者 李振春 姚云霞 +1 位作者 马在田 王华忠 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第4期430-440,共11页
The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three para... The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters. 展开更多
关键词 CRS stacking CRS gather migration velocity modeling optimized three parameters layer stripping
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部