期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FUZZY PRINCIPAL COMPONENT ANALYSIS AND ITS KERNEL-BASED MODEL 被引量:4
1
作者 Wu Xiaohong Zhou Jianjiang 《Journal of Electronics(China)》 2007年第6期772-775,共4页
Principal Component Analysis(PCA)is one of the most important feature extraction methods,and Kernel Principal Component Analysis(KPCA)is a nonlinear extension of PCA based on kernel methods.In real world,each input da... Principal Component Analysis(PCA)is one of the most important feature extraction methods,and Kernel Principal Component Analysis(KPCA)is a nonlinear extension of PCA based on kernel methods.In real world,each input data may not be fully assigned to one class and it may partially belong to other classes.Based on the theory of fuzzy sets,this paper presents Fuzzy Principal Component Analysis(FPCA)and its nonlinear extension model,i.e.,Kernel-based Fuzzy Principal Component Analysis(KFPCA).The experimental results indicate that the proposed algorithms have good performances. 展开更多
关键词 Principal Component Analysis (PCA) Kernel methods Fuzzy PCA (FPCA) Kernel PCA (KPCA)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部