期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Enhancement of terahertz coupling efficiency by improved antenna design in GaN/AlGaN high electron mobility transistor detectors 被引量:3
1
作者 孙云飞 孙建东 +3 位作者 张晓渝 秦华 张宝顺 吴东岷 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期516-521,共6页
An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared... An optimized micro-gated terahertz detector with novel triple resonant antenna is presented.The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared to the conventional bowtie antenna.In finite-difference-time-domain simulations,we found the performance of the self-mixing GaN/AlGaN high electron mobility transistor detector is mainly dependent on the parameters L gs(the gap between the gate and the source/drain antenna) and L w(the gap between the source and drain antenna).With the improved triple resonant antenna,an optimized micrometer-sized AlGaN/GaN high electron mobility transistor detector can achieve a high responsivity of 9.45×102 V/W at a frequency of 903 GHz at room temperature. 展开更多
关键词 terahertz detector triple resonant antenna two-dimensional electron gas high electron mobility transistor
下载PDF
Mechanical properties of silicon nanobeams with an undercut evaluated by combining the dynamic resonance test and finite element analysis 被引量:2
2
作者 张加宏 冒晓莉 +4 位作者 刘清惓 顾芳 李敏 刘恒 葛益娴 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期330-338,共9页
Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications. A numerical experimental method of determining resonant frequencies and Young's modulus of nanobeams by... Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications. A numerical experimental method of determining resonant frequencies and Young's modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by using a laser Doppler vibrometer is presented in this paper. Silicon nanobeam test structures are fabricated from silicon-oninsulator wafers by using a standard lithography and anisotropic wet etching release process, which inevitably generates the undercut of the nanobeam clamping. In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut, dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value △L, which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data. By using a least-square fit expression including △L, we finally extract Young's modulus from the measured resonance frequency versus effective length dependency and find that Young's modulus of a silicon nanobeam with 200-nm thickness is close to that of bulk silicon. This result supports that the finite size effect due to the surface effect does not play a role in the mechanical elastic behaviour of silicon nanobeams with thickness larger than 200 nm. 展开更多
关键词 silicon nanobeams with undercut mechanical properties mechanical testing finite element method
下载PDF
Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure 被引量:1
3
作者 李玲玲 魏勇 +4 位作者 刘春兰 任卓 周爱 刘志海 张羽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期201-208,共8页
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ... To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors. 展开更多
关键词 coaxial dual-waveguide optical fiber D structure optical fiber microsphere structure dual-channel fiber-optic surface plasmon resonance(SPR)sensor
下载PDF
Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
4
作者 魏勇 李玲玲 +4 位作者 刘春兰 胡江西 苏于东 吴萍 赵晓玲 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期252-260,共9页
In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by compre... In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by comprehensively investigating the influence of liquids with different thermal-optical coefficients and solid packaging materials on the performance of fiber SPR temperature sensor,a dual-channel fiber SPR temperature sensor based on liquid-solid cascade encapsulation was designed and fabricated.The liquid temperature sensing stage encapsulated in capillary worked in 616.03 nm-639.05 nm band,the solid sensing stage coated with pouring sealant worked in 719.37 nm-825.27 nm band,and the two stages were cascaded to form a fiber dual-channel temperature sensor.The testing results indicated that when the temperature range was 35℃-95℃,the sensitivity of two-stage temperature detection was−0.384 nm/℃and−1.765 nm/℃respectively.The proposed fiber sensor has simple fabrication and excellent performance which can be widely used in various fields of dual-channel temperature measurement and temperature compensation. 展开更多
关键词 surface plasmon resonance(SPR) temperature sensor liquid-solid cascade dual channel
下载PDF
Fiber cladding SPR bending sensor characterized by two parameters
5
作者 刘春兰 胡江西 +4 位作者 魏勇 苏于东 吴萍 李玲玲 赵晓玲 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期205-211,共7页
A fiber cladding surface plasmon resonance(SPR)bending sensor is realized by the cladding of the fiber structure.By employing coating film,the sensing zone is protected and the toughness of the sensor increases.Three ... A fiber cladding surface plasmon resonance(SPR)bending sensor is realized by the cladding of the fiber structure.By employing coating film,the sensing zone is protected and the toughness of the sensor increases.Three different sensing probes are tested,the experiment results indicate that the two parameters(wavelength sensitivity and light intensity sensitivity)sensing performances of the eccentric butt joint structures are superior to that of hetero-core structure,and the SPR bending sensor based on hetero-core structure is stable and uneasy to damage.By employing hetero-core fiber and silver film,a fiber cladding SPR bending sensor with better stabilization and sensing performance is realized.The proposed fabricating method of sensing probe with coating film provides a new approach for fiber SPR-distributed bending sensor. 展开更多
关键词 surface plasmon resonance(SPR) bending sensor eccentric butt joint hetero-core fiber
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部