With such significant advantages as all-day observation, penetrability and all-weather coverage, passive mi-crowave remote sensing technique has been widely applied in the research of global environmental change. As t...With such significant advantages as all-day observation, penetrability and all-weather coverage, passive mi-crowave remote sensing technique has been widely applied in the research of global environmental change. As the sat-ellite-based passive microwave remote sensor, the Advanced Microwave Scanning Radiometer-Earth Observing Sys-tem (AMSR-E) loaded on NASA's (National Aeronautics and Space Administration of USA) Aqua satellite has been popularly used in the field of microwave observation. The Microwave Radiation Imager (MWRI) loaded on the Chi-nese FengYun-3A (FY-3A) satellite is an AMSR-E-like conical scanning microwave sensor, but there are few reports about MWRI data. This paper firstly proposed an optimal spatial position matching algorithm from rough to exact for the position matching between AMSR-E and MWRI data, then taking Northeast China as an example, comparatively analyzed the microwave brightness temperature data derived from AMSR-E and MWRI. The results show that when the antenna footprints of the two sensors are filled with either full water, or full land, or mixed land and water with ap-proximate proportion, the errors of brightness temperature between AMSR-E and MWRI are usually in the range from -10 K to +10 K. In general, the residual values of brightness temperature between the two microwave sensors with the same spatial resolution are in the range of ±3 K. Because the spatial resolution of AMSR-E is three times as high as that of MWRI, the results indicate that the quality of MWRI data is better. The research can provide useful information for the MWRI data application and microwave unmixing method in the future.展开更多
Chaos-based encryption schemes have been studied extensively, while the security analysis methods for them are still problems to be resolved. Based on the periodic orbit theory, this paper proposes a novel security an...Chaos-based encryption schemes have been studied extensively, while the security analysis methods for them are still problems to be resolved. Based on the periodic orbit theory, this paper proposes a novel security analysis method. The periodic orbits theory indicates that the fundamental frequency of the spiraling orbits is the natural frequency of associated linearized system, which is decided by the parameters of the chaotic system. Thus, it is possible to recover the plaintext of secure communication systems based on chaotic shift keying by getting the average time on the spiraling orbits. Analysis and simulation results show that the security analysis method can break chaos shift keying secure communication systems, which use the parameters as keys.展开更多
LaF3:Yb^3+ , Er^+ microcrystals were synthesized by a hydrothermal method, and then, the LaF3: Yb^3+ , Er^+ microcrystals were coated with silica. Phase identification of LaF3: Yb^3+ , Er^+ and LaF3: Yb^3+ ...LaF3:Yb^3+ , Er^+ microcrystals were synthesized by a hydrothermal method, and then, the LaF3: Yb^3+ , Er^+ microcrystals were coated with silica. Phase identification of LaF3: Yb^3+ , Er^+ and LaF3: Yb^3+ , Er^+/SiO2 was performed via XRD. The TEM image showed that the size of LaF3: Yb^3+ , Er^+ was 150 nm and LaF3: Yb^3+ , Er^+/SiO2 presented clearly a core/shell structure with 20 nm shell thickness. The upconversion spectra of LaF3: Yb^3+ , Er^+ and LaF3: Yb^3+ , Er^+/SiO2 in solid state and in ethanol were studied with a 980 nm diode laser as the excitation source. The upconversion spectra showed that the silica shell had little effect on the properties of fluorescence of the LaF3:Yb^3+ , Er^+ microcrystals. At the same time, the green luminescence photo of LaF3: Yb3+, Er3+/SiO2 in the PBS buffer was obtained, which indicated that the LaF3: Yb^3+ , Er^+/SiO2 could be used in biological applications.展开更多
The important effects of snow cover to ground thermal decades. In the most of previous research, the effects were usually regime has received much attention of scholars during the past few evaluated through the numeri...The important effects of snow cover to ground thermal decades. In the most of previous research, the effects were usually regime has received much attention of scholars during the past few evaluated through the numerical models and many important results are found. However, less examples and insufficient data based on field measurements are available to show natural cases. In the present work, a typical case study in Mohe and Beijicun meteorological stations, which both are located in the most northern tip of China, is given to show the effects of snow cover on the ground thermal regime. The spatial (the ground profile) and time series analysis in the extremely snowy winter of 2012-2013 in Heilongjiang Province are also performed by contrast with those in the winter of 2011-2012 based on the measured data collected by 63 meteorological stations, Our results illustrate the positive (warmer) effect of snow cover on the ground temperature (GT) on the daily basis, the highest difference between GT and daily mean air temperature (DGAT) is as high as 32.35℃. Moreover, by the lag time analysis method it is found that the response time of GT from 0 cm to 20 cm ground depth to the alternate change of snow depth has 10 days lag, while at 40 cm depth the response of DGAT is not significant. This result is different from the previous research by modeling, in which the resnonse denth of ground to the alteration of snow depth is far more than 40 cm.展开更多
In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numeri...In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numerical simulation using our non-distributed passively mode-locked Er-doped fiber laser model. For researching characteristics of these wave-breaking-free self-similar pulses, chirp of them must be extracted. We propose several time-frequency analysis methods adopted in chirp extraction of ultra-short optical pulses for the first time and discuss the advantages and disadvantages of them in this particular application.展开更多
Porous Zn O was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous Zn O show that porous...Porous Zn O was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous Zn O show that porous Zn O possesses excellent acetone gas sensing properties. The response is 35.5 at the optimum operating temperature of 320?C to 100 ppm acetone. The response and recovery times to 50 ppm acetone are 2 s and 8 s, respectively. The lowest detecting limit to acetone is 0.25 ppm, and the response value is 3.8. Moreover, the sensors also exhibit excellent selectivity and long-time stability to acetone.展开更多
Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded...Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. This algorithm, called totally coded method (TCM), consists of representing the symbolic determinant of a circuit matrix by code series and performing symbolic analysis by code manipulation. We describe an efficient code-ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, TCM not only covers all advantages of the algorithm via determinant decision diagrams (DDD) but is more simple and efficient than DDD method.展开更多
The totally coded method (TCM) reveals the same objective law, which governs the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Base...The totally coded method (TCM) reveals the same objective law, which governs the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure code algorithm, it is more efficient because figure searching is no longer necessary. The code-series ( CS ), which are organized from node association table, have the holoinformation nature, so that both the content and the sign of each gain-term can be determined via the coded method.The principle of this method is obvious and it is suited for computer programming. The capability of the computeraided analysis for Switched Capacitor (SCN) can be enhanced.展开更多
In the context of next-generation optical access networks beyond 10 G, for high SE and flexible dynamic bandwidth allocation (DBA), the scheme of hybrid 64/16/4QAM-OFDM signal for downlink transmission and hybrid 16/8...In the context of next-generation optical access networks beyond 10 G, for high SE and flexible dynamic bandwidth allocation (DBA), the scheme of hybrid 64/16/4QAM-OFDM signal for downlink transmission and hybrid 16/8/QPSK-OFDM signal for uplink transmission is successfully proposed and experimentally presented in a full-duplex PON based on OFDM system. Here, for the uplink, in order to unit management of the optical line terminal (OLT) and reduce cost, the optical source functioned as the optical subcarrier at optical network units (ONUs) is from OLT in the central station. Moreover, there is an external cavity laser (ECL) with center frequency of 193.2 THz not only employed as optical modulated signal but also acted as LO signal. Our simulation results show that bit error ratio (BER) under hardware detection forward error correction has been successfully gained after 20 km of SSMF transmission. It is observed that the receiver sensitivity of multilevel PSK (M-PSK) is obviously larger than that of the M-QAM in this measurement scheme.展开更多
Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications.A numerical experimental method of determining resonant frequencies and Young’s modulus of nanobeams by ...Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications.A numerical experimental method of determining resonant frequencies and Young’s modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by using a laser Doppler vibrometer is presented in this paper.Silicon nanobeam test structures are fabricated from silicon-oninsulator wafers by using a standard lithography and anisotropic wet etching release process,which inevitably generates the undercut of the nanobeam clamping.In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut,dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value △L,which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data.By using a least-square fit expression including △L,we finally extract Young’s modulus from the measured resonance frequency versus effective length dependency and find that Young’s modulus of a silicon nanobeam with 200-nm thickness is close to that of bulk silicon.This result supports that the finite size effect due to the surface effect does not play a role in the mechanical elastic behaviour of silicon nanobeams with thickness larger than 200 nm.展开更多
Unusual intense infrared-to-ultraviolet upconversion luminescence was observed in YF3:yb3+(20%)/Tm3+(1%) nanocrystals under 980 ran excitation. The intense ultraviolet emissions (1I6→^3H6, ^1I6→3F4, and ^1D2...Unusual intense infrared-to-ultraviolet upconversion luminescence was observed in YF3:yb3+(20%)/Tm3+(1%) nanocrystals under 980 ran excitation. The intense ultraviolet emissions (1I6→^3H6, ^1I6→3F4, and ^1D2→^3H6) were affirmed arisillg from the excitation processes of five-photon and four-photon. In comparison with the bulk sample with the same chemical compositions, ultraviolet upconversion luminescence of the nanocrystals was markedly enhanced. Spectral analysis indicated that the enhancement was attributed to the decrease of Judd-Ofelt parameter Ω2, which precluded the transition rate from 3F2 to 3F4, enhanced the energy transfer process and populated the ^1D2 level: ^3F2→^3H6 (Tm^3+): 3H4→^1D2 (Tm^3+).展开更多
In this work, pure α-Fe2O3 and Er2O3-Fe2O3 nanotubes were synthesized by a simple single-capillary electrospin- ning technology followed by calcination treatment. The morphologies and crystal structures of the as-pre...In this work, pure α-Fe2O3 and Er2O3-Fe2O3 nanotubes were synthesized by a simple single-capillary electrospin- ning technology followed by calcination treatment. The morphologies and crystal structures of the as-prepared samples were characterized by scanning electron microscopy and x-ray diffraction, respectively. The gas-sensing properties of the as-prepared samples have been researched, and the result shows that the Er2O3-Fe2O3 nanotubes exhibit much better sen- sitivity to ethanol. The response value of Er2O3-Fe2O3 nanotubes to 10 ppm ethanol is 21 at the operating temperature 240α, which is 14 times larger than that of pure α-Fe2O3 nanotubes (response value is 1.5). The ethanol sensing properties of α-Fe2O3 nanotubes are remarkably enhanced by doping Er, and the lowest detection limit of Er2O3-Fe2O3 nanotubes is 300 ppb, to which the response value is about 2. The response and recovery times are about 4 s and 70 s to 10 ppm ethanol, respectively. In addition, the Er2O3-Fe2O3 nanotubes possess good selectivity and long-term stability.展开更多
Visible light variable optical attenuators(VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber...Visible light variable optical attenuators(VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber(POF) transmission systems.In this paper, a polymer/silica hybrid waveguide thermo–optic attenuator based on multimode interference(MMI) coupler is designed and fabricated to operate at 650 nm. The single-mode transmission condition, MMI coupler, and transition taper dimensions are optimized through the beam propagation method. Thermal analysis based on material properties provides the optimized heater placement angle. The fabricated VOA presents an attenuation of 26.5 dB with a 21-mW electrical input power at 650 nm. The rise time and fall time are 51.99 and 192 μs, respectively. The time–stability measurement results prove its working reliability.展开更多
Based on mirror-blocks, a totally coded algorithm (TCA) for switched-current (SI) network analysis in frequency domain is presented. The algorithm is simple, available, and suitable for any swltched-current networ...Based on mirror-blocks, a totally coded algorithm (TCA) for switched-current (SI) network analysis in frequency domain is presented. The algorithm is simple, available, and suitable for any swltched-current networks. A basis of analysis and design for switched-current networks via this algorithm is provided.展开更多
The ID3 algorithm is a classical learning algorithm of decision tree in data mining.The algorithm trends to choosing the attribute with more values,affect the efficiency of classification and prediction for building a...The ID3 algorithm is a classical learning algorithm of decision tree in data mining.The algorithm trends to choosing the attribute with more values,affect the efficiency of classification and prediction for building a decision tree.This article proposes a new approach based on an improved ID3 algorithm.The new algorithm introduces the importance factor λ when calculating the information entropy.It can strengthen the label of important attributes of a tree and reduce the label of non-important attributes.The algorithm overcomes the flaw of the traditional ID3 algorithm which tends to choose the attributes with more values,and also improves the efficiency and flexibility in the process of generating decision trees.展开更多
A novel attempt has been made in this paper for a different approach for determination of ring resonator transmittance with the help of delay line signal processing techniques and Totally Coded Method(TCM).A generaliz...A novel attempt has been made in this paper for a different approach for determination of ring resonator transmittance with the help of delay line signal processing techniques and Totally Coded Method(TCM).A generalized approach for determination of transfer function in Z-domain of optical waveguide based ring resonator is introduced.Delay line signal processing technique is used to develop the signal flow graph of different ring resonator architectures,and a rule is implemented to determine its overall transmittance.The parameters describing the performance of optical filter can be directly estimated from the frequency response plot.A waveguide based double ring resonator(DRR) architecture is proposed,and its frequency response analysis is carried out.展开更多
The N and C doping effects on the crystal structures, electronic and optical properties of fluorite structure CeO2 have been investigated using the first-principles calculation. Co-doping these two elements results in...The N and C doping effects on the crystal structures, electronic and optical properties of fluorite structure CeO2 have been investigated using the first-principles calculation. Co-doping these two elements results in the local lattice distortion and volume expansion of CeO2. Compared with the energy hand structure of pure CeO2, some local energy levels appear in the forbidden band, which may facilitate the light absorption. Moreover, the enhanced photo-catalytic properties of CeO2 were explained through the absorption spectra and the selection rule of the band-to-band transitions.展开更多
The totally coded method (TCM) reveal the same law which governing the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure ...The totally coded method (TCM) reveal the same law which governing the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure code algorithm, it is more efficiency because any figure searching is no longer necessary. The code-series (CS), which are organized from node association table, have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is obvious and it is suited for computer programming. The capability of the computer-aided analysis for the active network, such as operation amplifier network, can be enhanced.展开更多
A bio-inspired graphene/Au@ZnO photoelectrode has been prepared via breath figure method, in which Au@ZnO nanospheres were uniformly distributed in the whole honeycomb film. The size of the honeycomb holes effects the...A bio-inspired graphene/Au@ZnO photoelectrode has been prepared via breath figure method, in which Au@ZnO nanospheres were uniformly distributed in the whole honeycomb film. The size of the honeycomb holes effects the light using efficiency. The honeycomb film with smaller holes in more ordered array shows better antire- flective property. All the formed graphene/Au@ZnO honeycomb photoelectrodes show a fast, stable, and reversible response of photocurrent accompanied by each switch-on and switch-off event. Au@ZnO-modified graphene hon- eycomb film can combine the advantages of increased light harvesting provided by honeycomb structure, efficient charge separation from Au nanoparticles (NPs), and efficient electron transfer provided by graphene. Au@ZnO- modified graphene honeycomb film shows a two-fold increase of photocurrent generation than ZnO-modified gra- phene honeycomb film and a three-fold increase of photocurrent generation than Au@ZnO-modified graphene smooth film, respectively. The rational design and engineering of multi components with different functions in a hybrid bio-inspired structure hold great promise for further efficient solar energy conversion devices.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40971189)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-340)China Postdoctoral Science Foundation (No. 20100471276)
文摘With such significant advantages as all-day observation, penetrability and all-weather coverage, passive mi-crowave remote sensing technique has been widely applied in the research of global environmental change. As the sat-ellite-based passive microwave remote sensor, the Advanced Microwave Scanning Radiometer-Earth Observing Sys-tem (AMSR-E) loaded on NASA's (National Aeronautics and Space Administration of USA) Aqua satellite has been popularly used in the field of microwave observation. The Microwave Radiation Imager (MWRI) loaded on the Chi-nese FengYun-3A (FY-3A) satellite is an AMSR-E-like conical scanning microwave sensor, but there are few reports about MWRI data. This paper firstly proposed an optimal spatial position matching algorithm from rough to exact for the position matching between AMSR-E and MWRI data, then taking Northeast China as an example, comparatively analyzed the microwave brightness temperature data derived from AMSR-E and MWRI. The results show that when the antenna footprints of the two sensors are filled with either full water, or full land, or mixed land and water with ap-proximate proportion, the errors of brightness temperature between AMSR-E and MWRI are usually in the range from -10 K to +10 K. In general, the residual values of brightness temperature between the two microwave sensors with the same spatial resolution are in the range of ±3 K. Because the spatial resolution of AMSR-E is three times as high as that of MWRI, the results indicate that the quality of MWRI data is better. The research can provide useful information for the MWRI data application and microwave unmixing method in the future.
文摘Chaos-based encryption schemes have been studied extensively, while the security analysis methods for them are still problems to be resolved. Based on the periodic orbit theory, this paper proposes a novel security analysis method. The periodic orbits theory indicates that the fundamental frequency of the spiraling orbits is the natural frequency of associated linearized system, which is decided by the parameters of the chaotic system. Thus, it is possible to recover the plaintext of secure communication systems based on chaotic shift keying by getting the average time on the spiraling orbits. Analysis and simulation results show that the security analysis method can break chaos shift keying secure communication systems, which use the parameters as keys.
基金Project supported by the National Natural Science Foundation of China (10474096 and 50672030)
文摘LaF3:Yb^3+ , Er^+ microcrystals were synthesized by a hydrothermal method, and then, the LaF3: Yb^3+ , Er^+ microcrystals were coated with silica. Phase identification of LaF3: Yb^3+ , Er^+ and LaF3: Yb^3+ , Er^+/SiO2 was performed via XRD. The TEM image showed that the size of LaF3: Yb^3+ , Er^+ was 150 nm and LaF3: Yb^3+ , Er^+/SiO2 presented clearly a core/shell structure with 20 nm shell thickness. The upconversion spectra of LaF3: Yb^3+ , Er^+ and LaF3: Yb^3+ , Er^+/SiO2 in solid state and in ethanol were studied with a 980 nm diode laser as the excitation source. The upconversion spectra showed that the silica shell had little effect on the properties of fluorescence of the LaF3:Yb^3+ , Er^+ microcrystals. At the same time, the green luminescence photo of LaF3: Yb3+, Er3+/SiO2 in the PBS buffer was obtained, which indicated that the LaF3: Yb^3+ , Er^+/SiO2 could be used in biological applications.
基金Under the auspices of National Natural Science Foundation of China(No.41471289,41301368)Natural Science Foundation of Jilin Province(No.20140101158JC)Foundation of State Key Laboratory of Remote Sensing Science(No.OFSLRSS201517)
文摘The important effects of snow cover to ground thermal decades. In the most of previous research, the effects were usually regime has received much attention of scholars during the past few evaluated through the numerical models and many important results are found. However, less examples and insufficient data based on field measurements are available to show natural cases. In the present work, a typical case study in Mohe and Beijicun meteorological stations, which both are located in the most northern tip of China, is given to show the effects of snow cover on the ground thermal regime. The spatial (the ground profile) and time series analysis in the extremely snowy winter of 2012-2013 in Heilongjiang Province are also performed by contrast with those in the winter of 2011-2012 based on the measured data collected by 63 meteorological stations, Our results illustrate the positive (warmer) effect of snow cover on the ground temperature (GT) on the daily basis, the highest difference between GT and daily mean air temperature (DGAT) is as high as 32.35℃. Moreover, by the lag time analysis method it is found that the response time of GT from 0 cm to 20 cm ground depth to the alternate change of snow depth has 10 days lag, while at 40 cm depth the response of DGAT is not significant. This result is different from the previous research by modeling, in which the resnonse denth of ground to the alteration of snow depth is far more than 40 cm.
基金supported by National Natural Science Foundation of China and Scientific Forefront and Interdisciplinary Innovation Project, Jilin University under Grants No. 60372061,200903296
文摘In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numerical simulation using our non-distributed passively mode-locked Er-doped fiber laser model. For researching characteristics of these wave-breaking-free self-similar pulses, chirp of them must be extracted. We propose several time-frequency analysis methods adopted in chirp extraction of ultra-short optical pulses for the first time and discuss the advantages and disadvantages of them in this particular application.
基金Projected supported by the Project of Challenge Cup for College Students,China(Grant No.450060497053)
文摘Porous Zn O was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous Zn O show that porous Zn O possesses excellent acetone gas sensing properties. The response is 35.5 at the optimum operating temperature of 320?C to 100 ppm acetone. The response and recovery times to 50 ppm acetone are 2 s and 8 s, respectively. The lowest detecting limit to acetone is 0.25 ppm, and the response value is 3.8. Moreover, the sensors also exhibit excellent selectivity and long-time stability to acetone.
文摘Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. This algorithm, called totally coded method (TCM), consists of representing the symbolic determinant of a circuit matrix by code series and performing symbolic analysis by code manipulation. We describe an efficient code-ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, TCM not only covers all advantages of the algorithm via determinant decision diagrams (DDD) but is more simple and efficient than DDD method.
文摘The totally coded method (TCM) reveals the same objective law, which governs the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure code algorithm, it is more efficient because figure searching is no longer necessary. The code-series ( CS ), which are organized from node association table, have the holoinformation nature, so that both the content and the sign of each gain-term can be determined via the coded method.The principle of this method is obvious and it is suited for computer programming. The capability of the computeraided analysis for Switched Capacitor (SCN) can be enhanced.
文摘In the context of next-generation optical access networks beyond 10 G, for high SE and flexible dynamic bandwidth allocation (DBA), the scheme of hybrid 64/16/4QAM-OFDM signal for downlink transmission and hybrid 16/8/QPSK-OFDM signal for uplink transmission is successfully proposed and experimentally presented in a full-duplex PON based on OFDM system. Here, for the uplink, in order to unit management of the optical line terminal (OLT) and reduce cost, the optical source functioned as the optical subcarrier at optical network units (ONUs) is from OLT in the central station. Moreover, there is an external cavity laser (ECL) with center frequency of 193.2 THz not only employed as optical modulated signal but also acted as LO signal. Our simulation results show that bit error ratio (BER) under hardware detection forward error correction has been successfully gained after 20 km of SSMF transmission. It is observed that the receiver sensitivity of multilevel PSK (M-PSK) is obviously larger than that of the M-QAM in this measurement scheme.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 41075026 and 61001044)the Open Re-search Fund of Key Laboratory of Microelectromechanical System of Ministry of Education,Southeast University,China (Grant Nos. 2009-03 and 2010-02)+1 种基金the Special Fund for Meteorology Research in the Public Interest,China (Grant No. GYHY200906037)the Priority Academic Program Development of Sensor Networks and Modern Meteorological Equipment of Jiangsu Provincial Higher Education Institutions
文摘Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications.A numerical experimental method of determining resonant frequencies and Young’s modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by using a laser Doppler vibrometer is presented in this paper.Silicon nanobeam test structures are fabricated from silicon-oninsulator wafers by using a standard lithography and anisotropic wet etching release process,which inevitably generates the undercut of the nanobeam clamping.In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut,dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value △L,which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data.By using a least-square fit expression including △L,we finally extract Young’s modulus from the measured resonance frequency versus effective length dependency and find that Young’s modulus of a silicon nanobeam with 200-nm thickness is close to that of bulk silicon.This result supports that the finite size effect due to the surface effect does not play a role in the mechanical elastic behaviour of silicon nanobeams with thickness larger than 200 nm.
基金supported by the National Natural Science Foundation of China (10474096 and 50672030)
文摘Unusual intense infrared-to-ultraviolet upconversion luminescence was observed in YF3:yb3+(20%)/Tm3+(1%) nanocrystals under 980 ran excitation. The intense ultraviolet emissions (1I6→^3H6, ^1I6→3F4, and ^1D2→^3H6) were affirmed arisillg from the excitation processes of five-photon and four-photon. In comparison with the bulk sample with the same chemical compositions, ultraviolet upconversion luminescence of the nanocrystals was markedly enhanced. Spectral analysis indicated that the enhancement was attributed to the decrease of Judd-Ofelt parameter Ω2, which precluded the transition rate from 3F2 to 3F4, enhanced the energy transfer process and populated the ^1D2 level: ^3F2→^3H6 (Tm^3+): 3H4→^1D2 (Tm^3+).
基金supported by Jilin Provincial Science and Technology Department,China(Grant No.20140204027GX)the Challenge Cup for College Students,China(Grant No.450060497053)
文摘In this work, pure α-Fe2O3 and Er2O3-Fe2O3 nanotubes were synthesized by a simple single-capillary electrospin- ning technology followed by calcination treatment. The morphologies and crystal structures of the as-prepared samples were characterized by scanning electron microscopy and x-ray diffraction, respectively. The gas-sensing properties of the as-prepared samples have been researched, and the result shows that the Er2O3-Fe2O3 nanotubes exhibit much better sen- sitivity to ethanol. The response value of Er2O3-Fe2O3 nanotubes to 10 ppm ethanol is 21 at the operating temperature 240α, which is 14 times larger than that of pure α-Fe2O3 nanotubes (response value is 1.5). The ethanol sensing properties of α-Fe2O3 nanotubes are remarkably enhanced by doping Er, and the lowest detection limit of Er2O3-Fe2O3 nanotubes is 300 ppb, to which the response value is about 2. The response and recovery times are about 4 s and 70 s to 10 ppm ethanol, respectively. In addition, the Er2O3-Fe2O3 nanotubes possess good selectivity and long-term stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61205032,61475061,61405070,61177027,61275033,and 61261130586)the Science and Technology Development Plan of Jilin Province,China(Grant No.20140519006JH)
文摘Visible light variable optical attenuators(VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber(POF) transmission systems.In this paper, a polymer/silica hybrid waveguide thermo–optic attenuator based on multimode interference(MMI) coupler is designed and fabricated to operate at 650 nm. The single-mode transmission condition, MMI coupler, and transition taper dimensions are optimized through the beam propagation method. Thermal analysis based on material properties provides the optimized heater placement angle. The fabricated VOA presents an attenuation of 26.5 dB with a 21-mW electrical input power at 650 nm. The rise time and fall time are 51.99 and 192 μs, respectively. The time–stability measurement results prove its working reliability.
文摘Based on mirror-blocks, a totally coded algorithm (TCA) for switched-current (SI) network analysis in frequency domain is presented. The algorithm is simple, available, and suitable for any swltched-current networks. A basis of analysis and design for switched-current networks via this algorithm is provided.
文摘The ID3 algorithm is a classical learning algorithm of decision tree in data mining.The algorithm trends to choosing the attribute with more values,affect the efficiency of classification and prediction for building a decision tree.This article proposes a new approach based on an improved ID3 algorithm.The new algorithm introduces the importance factor λ when calculating the information entropy.It can strengthen the label of important attributes of a tree and reduce the label of non-important attributes.The algorithm overcomes the flaw of the traditional ID3 algorithm which tends to choose the attributes with more values,and also improves the efficiency and flexibility in the process of generating decision trees.
文摘A novel attempt has been made in this paper for a different approach for determination of ring resonator transmittance with the help of delay line signal processing techniques and Totally Coded Method(TCM).A generalized approach for determination of transfer function in Z-domain of optical waveguide based ring resonator is introduced.Delay line signal processing technique is used to develop the signal flow graph of different ring resonator architectures,and a rule is implemented to determine its overall transmittance.The parameters describing the performance of optical filter can be directly estimated from the frequency response plot.A waveguide based double ring resonator(DRR) architecture is proposed,and its frequency response analysis is carried out.
基金Project supported by the National Natural Science Foundation of China(Grant No.61306098)
文摘The N and C doping effects on the crystal structures, electronic and optical properties of fluorite structure CeO2 have been investigated using the first-principles calculation. Co-doping these two elements results in the local lattice distortion and volume expansion of CeO2. Compared with the energy hand structure of pure CeO2, some local energy levels appear in the forbidden band, which may facilitate the light absorption. Moreover, the enhanced photo-catalytic properties of CeO2 were explained through the absorption spectra and the selection rule of the band-to-band transitions.
文摘The totally coded method (TCM) reveal the same law which governing the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure code algorithm, it is more efficiency because any figure searching is no longer necessary. The code-series (CS), which are organized from node association table, have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is obvious and it is suited for computer programming. The capability of the computer-aided analysis for the active network, such as operation amplifier network, can be enhanced.
文摘A bio-inspired graphene/Au@ZnO photoelectrode has been prepared via breath figure method, in which Au@ZnO nanospheres were uniformly distributed in the whole honeycomb film. The size of the honeycomb holes effects the light using efficiency. The honeycomb film with smaller holes in more ordered array shows better antire- flective property. All the formed graphene/Au@ZnO honeycomb photoelectrodes show a fast, stable, and reversible response of photocurrent accompanied by each switch-on and switch-off event. Au@ZnO-modified graphene hon- eycomb film can combine the advantages of increased light harvesting provided by honeycomb structure, efficient charge separation from Au nanoparticles (NPs), and efficient electron transfer provided by graphene. Au@ZnO- modified graphene honeycomb film shows a two-fold increase of photocurrent generation than ZnO-modified gra- phene honeycomb film and a three-fold increase of photocurrent generation than Au@ZnO-modified graphene smooth film, respectively. The rational design and engineering of multi components with different functions in a hybrid bio-inspired structure hold great promise for further efficient solar energy conversion devices.