Anionic surfactant sodium dodecyl benzene sulfonate(SDBS)at varying concentrations was selected to investigate the influence on the wettability of Zhaozhuang Coal by molecular dynamics simulation.Six groups of water/s...Anionic surfactant sodium dodecyl benzene sulfonate(SDBS)at varying concentrations was selected to investigate the influence on the wettability of Zhaozhuang Coal by molecular dynamics simulation.Six groups of water/surfactant/coal systems with different concentrations were constructed.The influence of surfactant with different concentrations on the wettability of coal was concluded by analyzing various properties from the energetic behaviors to the dynamic characteristics.The results show that the interfacial tension decreases sharply and then rises slowly with the increase of SDBS surfactant concentration,obtaining that surfactants can obviously reduce the interfacial tension.The surfactant molecules could be detected at the water/coal interface through analyzing the system’s relative concentration distribution.In addition,the difference in the wettability of surfactants on coal surfaces is caused by the spatial distribution differences of alkyl chains and the benzene ring of the surfactant molecules.And the negative interaction energy between SDBS and the coal surface indicates that adsorption process is spontaneous.Furthermore,it is of great practical significance for improving the dust reduction effect and reducing the disaster of coal dust by exploring the effects of surfactant molecules on the wettability of coal.展开更多
Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability ...Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.展开更多
基金financially supported by the State Key Research Development Program of China(No.2016YFC0600708)the Fundamental Research Funds for the Central Universities of China(No.2011QZ02)the Yue Qi Distinguished Scholar Project,China University of Mining&Technology,Beijing
文摘Anionic surfactant sodium dodecyl benzene sulfonate(SDBS)at varying concentrations was selected to investigate the influence on the wettability of Zhaozhuang Coal by molecular dynamics simulation.Six groups of water/surfactant/coal systems with different concentrations were constructed.The influence of surfactant with different concentrations on the wettability of coal was concluded by analyzing various properties from the energetic behaviors to the dynamic characteristics.The results show that the interfacial tension decreases sharply and then rises slowly with the increase of SDBS surfactant concentration,obtaining that surfactants can obviously reduce the interfacial tension.The surfactant molecules could be detected at the water/coal interface through analyzing the system’s relative concentration distribution.In addition,the difference in the wettability of surfactants on coal surfaces is caused by the spatial distribution differences of alkyl chains and the benzene ring of the surfactant molecules.And the negative interaction energy between SDBS and the coal surface indicates that adsorption process is spontaneous.Furthermore,it is of great practical significance for improving the dust reduction effect and reducing the disaster of coal dust by exploring the effects of surfactant molecules on the wettability of coal.
基金Project(2021MD703848) supported by the China Postdoctoral Science FoundationProjects(52174229, 52174230)supported by the National Natural Science Foundation of China+1 种基金Project(2021-KF-23-04) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2020CXNL10) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.