期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Coupled Cross-Flow/in-Line Vortex-Induced Vibration Responses of a Catenary-Type Riser Subjected to Uniform Flows
1
作者 LI Xiaomin CAO Xi +1 位作者 LI Fuheng YANG Zhiwen 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1202-1212,共11页
A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite ... A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite element method,the CTR was discretized into a finite number of spatial particles whose motions satisfy Newton’s second law.The Van der Pol oscillator was used to simulate the effect of vortex shedding.The coupling equations of structural vibration and wake oscillator were solved using an explicit central differential algorithm.The numerical model was verified with the published results.The VIV characteristics of the CTR subjected to uniform flows,including displacement,frequency,standing wave,traveling wave,motion trajectory,and energy transfer,were studied comprehensively.The numerical results revealed that the multimode property occurs in the CF-and IL-direction VIV responses of the CTR.An increase in the flow velocity has slight effects on the maximum VIV displacement.Due to structural nonlin-earity,the double-frequency relationship in the CF and IL directions is rarely captured.Therefore,the vibration trajectories display the shape of an inclined elliptical orbit.Moreover,the negative energy region is inconspicuous under the excitation of the uniform flow. 展开更多
关键词 vortex-induced vibration vector form intrinsic finite element catenary-type riser wake oscillator equation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部