In order to make more exact predictions of gas emissions, information fusion and chaos time series are com- bined to predict the amount of gas emission in pits. First, a multi-sensor information fusion frame is establ...In order to make more exact predictions of gas emissions, information fusion and chaos time series are com- bined to predict the amount of gas emission in pits. First, a multi-sensor information fusion frame is established. The frame includes a data level, a character level and a decision level. Functions at every level are interpreted in detail in this paper. Then, the process of information fusion for gas emission is introduced. On the basis of those data processed at the data and character levels, the chaos time series and neural network are combined to predict the amount of gas emission at the decision level. The weights of the neural network are gained by training not by manual setting, in order to avoid subjectivity introduced by human intervention. Finally, the experimental results were analyzed in Matlab 6.0 and prove that the method is more accurate in the prediction of the amount of gas emission than the traditional method.展开更多
基金Project BK2001073 supported by Natural Science Foundation of Jiangsu
文摘In order to make more exact predictions of gas emissions, information fusion and chaos time series are com- bined to predict the amount of gas emission in pits. First, a multi-sensor information fusion frame is established. The frame includes a data level, a character level and a decision level. Functions at every level are interpreted in detail in this paper. Then, the process of information fusion for gas emission is introduced. On the basis of those data processed at the data and character levels, the chaos time series and neural network are combined to predict the amount of gas emission at the decision level. The weights of the neural network are gained by training not by manual setting, in order to avoid subjectivity introduced by human intervention. Finally, the experimental results were analyzed in Matlab 6.0 and prove that the method is more accurate in the prediction of the amount of gas emission than the traditional method.