Background:In the face of continued degradation and loss of wetlands in the Yangtze River floodplain(YRF),there is an urgent need to monitor the abundance and distribution of wintering waterbirds.To understand fully o...Background:In the face of continued degradation and loss of wetlands in the Yangtze River floodplain(YRF),there is an urgent need to monitor the abundance and distribution of wintering waterbirds.To understand fully observed annual changes,we need to monitor demographic rates to understand factors affecting global population size.Annual reproduction success contributes to dynamic changes in population size and age structure,so an assessment of the juvenile ratio(i.e.first winter birds as a proportion of total number aged)of overwintering waterbirds can be an important indicator of the reproductive success in the preceding breeding season.Methods:During 2016-2019,we sampled juvenile ratios among 10 key waterbird species from the wetlands in the YRF.Based on these data,we here attempt to establish a simple,efficient,focused and reliable juvenile ratio monitoring scheme,to assess consistently and accurately relative annual breeding success and its contribution to the age structure among these waterbird species.Results:We compared juvenile ratio data collected throughout the winter and found that the optimal time for undertaking these samples was in the early stages of arrival for migratory waterbirds reaching their wintering area(early to mid-December).We recommend counting consistently at key points(i.e.those where>1%biogeographical flyway population were counted)at sites of major flyway importance(Poyang Lake,East Dongting Lake,Shengjin Lake,Caizi Lake,Longgan Lake and Chen Lake).Based on this,the error rate of the programme(155 planned points,the count of 10 waterbird species is 826-8955)is less than 5%.Conclusions:We established a juvenile ratio monitoring programme for 10 key waterbird species in the wetlands of the YRF,and discuss the feasibility and necessity of implementing such a future programme,and how to use these data in our monitoring and understanding of the population dynamics of these waterbird populations.展开更多
Background: Gossypium hirsutum(upland cotton) is one of the principal fiber crops in the world. Cotton yield is highly affected by abiotic stresses, among which salt stress is considered as a major problem around the ...Background: Gossypium hirsutum(upland cotton) is one of the principal fiber crops in the world. Cotton yield is highly affected by abiotic stresses, among which salt stress is considered as a major problem around the globe. Transgenic approach is efficient to improve cotton salt tolerance but depending on the availability of salt tolerance genes.Results: In this study we evaluated salt tolerance candidate gene ST7 from Thellungiella halophila, encoding a homolog of Arabidopsis aluminum-induced protein, in cotton. Our results showed that ThST7 overexpression in cotton improved germination under NaCl stress as well as seedling growth. Our field trials also showed that ThST7 transgenic cotton lines produced higher yield under salt stress conditions. The improved salt tolerance of the transgenic cotton lines was partially contributed by enhanced antioxidation as shown by diaminobenzidine(DAB) and nitrotetrazolium blue chloride(NBT) staining. Moreover, transcriptomic analysis of ThST7 overexpression lines showed a significant upregulation of the genes involved in ion homeostasis and antioxidation, consistent with the salt tolerance phenotype of the transgenic cotton.Conclusions: Our results demonstrate that ThST7 has the ability to improve salt tolerance in cotton. The ThST7 transgenic cotton may be used in cotton breeding for salt tolerance cultivars.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.31870369,31970433)China Biodiversity Observation Networks(Sino BON)+1 种基金Innovative Research Group Project of the National Natural Science Foundation of China(CN)No.31670424。
文摘Background:In the face of continued degradation and loss of wetlands in the Yangtze River floodplain(YRF),there is an urgent need to monitor the abundance and distribution of wintering waterbirds.To understand fully observed annual changes,we need to monitor demographic rates to understand factors affecting global population size.Annual reproduction success contributes to dynamic changes in population size and age structure,so an assessment of the juvenile ratio(i.e.first winter birds as a proportion of total number aged)of overwintering waterbirds can be an important indicator of the reproductive success in the preceding breeding season.Methods:During 2016-2019,we sampled juvenile ratios among 10 key waterbird species from the wetlands in the YRF.Based on these data,we here attempt to establish a simple,efficient,focused and reliable juvenile ratio monitoring scheme,to assess consistently and accurately relative annual breeding success and its contribution to the age structure among these waterbird species.Results:We compared juvenile ratio data collected throughout the winter and found that the optimal time for undertaking these samples was in the early stages of arrival for migratory waterbirds reaching their wintering area(early to mid-December).We recommend counting consistently at key points(i.e.those where>1%biogeographical flyway population were counted)at sites of major flyway importance(Poyang Lake,East Dongting Lake,Shengjin Lake,Caizi Lake,Longgan Lake and Chen Lake).Based on this,the error rate of the programme(155 planned points,the count of 10 waterbird species is 826-8955)is less than 5%.Conclusions:We established a juvenile ratio monitoring programme for 10 key waterbird species in the wetlands of the YRF,and discuss the feasibility and necessity of implementing such a future programme,and how to use these data in our monitoring and understanding of the population dynamics of these waterbird populations.
基金supported by grants from Ministry of Science and Technology of China(Grant No.2016ZX08005004-003).
文摘Background: Gossypium hirsutum(upland cotton) is one of the principal fiber crops in the world. Cotton yield is highly affected by abiotic stresses, among which salt stress is considered as a major problem around the globe. Transgenic approach is efficient to improve cotton salt tolerance but depending on the availability of salt tolerance genes.Results: In this study we evaluated salt tolerance candidate gene ST7 from Thellungiella halophila, encoding a homolog of Arabidopsis aluminum-induced protein, in cotton. Our results showed that ThST7 overexpression in cotton improved germination under NaCl stress as well as seedling growth. Our field trials also showed that ThST7 transgenic cotton lines produced higher yield under salt stress conditions. The improved salt tolerance of the transgenic cotton lines was partially contributed by enhanced antioxidation as shown by diaminobenzidine(DAB) and nitrotetrazolium blue chloride(NBT) staining. Moreover, transcriptomic analysis of ThST7 overexpression lines showed a significant upregulation of the genes involved in ion homeostasis and antioxidation, consistent with the salt tolerance phenotype of the transgenic cotton.Conclusions: Our results demonstrate that ThST7 has the ability to improve salt tolerance in cotton. The ThST7 transgenic cotton may be used in cotton breeding for salt tolerance cultivars.