Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g....Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities.展开更多
Metal-covalent organic frameworks(MCOF)as a bridge between covalent organic framework(COF)and metal organic framework(MOF)possess the characteristics of open metal sites,structure stability,crystallinity,tunability as...Metal-covalent organic frameworks(MCOF)as a bridge between covalent organic framework(COF)and metal organic framework(MOF)possess the characteristics of open metal sites,structure stability,crystallinity,tunability as well as porosity,but still in its infancy.In this work,a covalent organic framework DT-COF with a keto-enamine structure synthesized from the condensation of 3,3'-dihydroxybiphenyl diamine(DHBD)and triformylphloroglucinol(TFP)was coordinated with Cu^(2+)by a simple post-modification method to a obtain a copper-coordinated metal-covalent organic framework of Cu-DT COF.The isomerization from a keto-enamine structure of DT-COF to a enol-imine structure of Cu-DT COF is induced due to the coordination interaction of Cu^(2+).The structure change of Cu-DT COF induces the change of the electron distribution in the Cu-DT COF,which greatly promotes the activation and deep Li-storage behavior of the COF skeleton.As anode material for lithium-ion batteries(LIBs),Cu-DT COF exhibits greatly improved electrochemical performance,retaining the specific capacities of 760 mAh g^(-1)after 200 cycles and 505 mAh g^(-1)after 500 cycles at a current density of 0.5 A g^(-1).The preliminary lithium storage mechanism studies indicate that Cu^(2+)is also involved in the lithium storage process.A possible mechanism for Cu-DT COF was proposed on the basis of FT-IR,XPS,EPR characterization and electrochemical analysis.This work enlightens a novel strategy to improve the energy storage performance of COF and promotes the application of COF and MCOF in LIBs.展开更多
Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ po...Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ polyaniline(PANI)/silver nanowires(Ag NWs) composites with a “branch-trunk” interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional(1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of Ag NWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI(branch) was firmly attached to the CF(trunk) through polydopamine(PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.展开更多
Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes i...Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.展开更多
In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The micr...In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The microstructure images indicated that the SiC fillers were successfully prepared in the skeleton pores of the Ni/C foam.The influence of the PIP cycles on the microwave absorption performances was researched,and the results indicated that after the primary PIP process,Ni/C@SiC-I possessed the optimal microwave absorbing performance with a minimum reflection loss(RL)of-25.87 d B at 5.28 GHz and 5.00 mm.Besides,the RL values could be below-10.00 dB from 5.88 GHz to 7.74 GHz when the corresponding matching thickness was 3.85 mm.However,the microwave absorption properties of Ni/C@SiC-II and Ni/C@SiC-Ⅲwere tremendously degraded as the PIP times increased.At last,the electromagnetic parameter,dielectric loss,attenuation constant as well as impedance matching coefficient were further investigated to analyze the absorbing mechanism,which opened a new path for the certain scientific evaluation of the absorbing materials and had extremely important to the defence technology.展开更多
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution rea...Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts.展开更多
With the continuous demand of material performance,the development of materials is rapid,and the professional curriculum teaching of“new inorganic materials”as well as its teaching methods related to the internet ma...With the continuous demand of material performance,the development of materials is rapid,and the professional curriculum teaching of“new inorganic materials”as well as its teaching methods related to the internet mandate a reform,in order to meet the needs of innovative high-quality personnel training.The update and optimization of the teaching content and methods assisted by the internet meet the needs of modern teaching and research work.More than 90%of students believe that internet teaching is conducive to the understanding of classroom knowledge and the development of innovative projects.展开更多
As the rapid development of portable and wearable devices,different electromagnetic interference(EMI)shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution.However,li...As the rapid development of portable and wearable devices,different electromagnetic interference(EMI)shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution.However,limited EMI shielding materials are successfully used in practical applications,due to the heavy thickness and absence of sufficient strength or flexibility.Herein,an ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure is constructed for EMI shielding application via a facile alternating vacuum-assisted filtration process.The composite paper exhibits outstanding mechanical properties with a tensile strength of 97.9±5.0 MPa and a fracture strain of 4.6±0.2%.Particularly,the paper shows a high electrical conductivity of 2506.6 S m?1 and EMI shielding effectiveness(EMI SE)of 38.4 dB due to the sandwich structure in improving EMI SE,and the gradient structure on regulating the contributions from reflection and absorption.This strategy is of great significance in fabricating ultrathin and flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene-based composite materials.展开更多
FeNiCoCrTi0.5 coatings with different process parameters were fabricated by laser cladding. The macro-morphology, phase, microstructure, hardness, and wear resistance of each coating were studied. The smoothness and d...FeNiCoCrTi0.5 coatings with different process parameters were fabricated by laser cladding. The macro-morphology, phase, microstructure, hardness, and wear resistance of each coating were studied. The smoothness and dilution rate of the FeNiCoCrTi0.5 coating generally increased with the increase of specific energy(Es), which is the laser irradiation energy received by a unit area. FeNiCoCrTi0.5 coatings at different parameters had bcc, fcc, and Ti-rich phases as well as equiaxed, dendritic, and columnar structures. When Es increased, the size of each structure increased and the distribution area of the columnar and dendritic structures changed. The prepared FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 had the highest hardness and the best wear resistance, the highest hardness of the coating reached HV 498.37, which is twice the substrate hardness. The average hardness of the FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 was 15.8% higher than the lowest average hardness of the coating with the Es of 108.33 J·mm-2. The worn surface morphologies indicate that the FeNiCoCrTi0.5 coatings exhibited abrasive wear.展开更多
Developing ultrabroad radar-infrared compatible stealth materials has turned into a research hotspot,which is still a problem to be solved.Herein,the copper sulfide wrapped by reduced graphene oxide to obtain three-di...Developing ultrabroad radar-infrared compatible stealth materials has turned into a research hotspot,which is still a problem to be solved.Herein,the copper sulfide wrapped by reduced graphene oxide to obtain three-dimensional(3D)porous network composite aerogels(CuS@rGO)were synthesized via thermal reduction ways(hydrothermal,ascorbic acid reduction)and freeze-drying strategy.It was discovered that the phase components(rGO and CuS phases)and micro/nano structure(microporous and nanosheet)were well-modified by modulating the additive amounts of CuS and changing the reduction ways,which resulted in the variation of the pore structure,defects,complex permittivity,microwave absorption,radar cross section(RCS)reduction value and infrared(IR)emissivity.Notably,the obtained CuS@rGO aerogels with a single dielectric loss type can achieve an ultrabroad bandwidth of 8.44 GHz at 2.8 mm with the low filler content of 6 wt%by a hydrothermal method.Besides,the composite aerogel via the ascorbic acid reduction realizes the minimum reflection loss(RL_(min))of−60.3 dB with the lower filler content of 2 wt%.The RCS reduction value can reach 53.3 dB m^(2),which effectively reduces the probability of the target being detected by the radar detector.Furthermore,the laminated porous architecture and multicomponent endowed composite aerogels with thermal insulation and IR stealth versatility.Thus,this work offers a facile method to design and develop porous rGO-based composite aerogel absorbers with radar-IR compatible stealth.展开更多
A three-dimensional laser absorption model based on ray tracing was established to describe the coupled interaction of a laser beam with particles in the powder layers of pure tungsten(W)material processed by selectiv...A three-dimensional laser absorption model based on ray tracing was established to describe the coupled interaction of a laser beam with particles in the powder layers of pure tungsten(W)material processed by selective laser melting(SLM).The influence of particle size on the powder-to-laser absorptivity and underlying absorption behavior was investigated.An intrinsic relationship between the absorption,distribution of absorbed irradiance within the powder layers,and surface morphology and geometric characteristics(e.g.,contact angle,width and height of tracks,and remelted depth)of the laser scanning tracks is presented here.Simulation conclusions indicate that the absorptivity of the powder layers considerably exceeds the single powder particle value or the dense solid material value.With an increase in particle size,the powder layer absorbs less laser energy.The maximum absorptivity of theWpowder layers reached 0.6030 at the particle size of 5 lm.The distribution of laser irradiance on the particle surface was sensitive to particle size,azimuthal angle,and the position of the powder particles on the substrate.The maximum irradiance in the powder layers decreased from 1.117×10^–3 to 0.85×10^–3W·μm^-2 and the contour of the irradiance distribution in the center of the irradiated area gradually contracted when the particle size increased from 5 to 45 lm.An experimental study on the surface morphologies and cross-sectional geometric characteristics of SLM-fabricated W material was performed,and the experimental results validated the mechanisms of the powder-to-laser-absorption behavior that were obtained in simulations.This work provides a scientific basis for the application of the ray-tracing model to predict the wetting and spreading ability of melted tracks during SLM additive manufacturing in order to yield a sound laser processability.展开更多
This paper deals with a study on SnPb and lead-free soldered joint reliability of PLCC devices with different lead counts under three kinds of temperature cycle profiles, which is based on non-linear finite element me...This paper deals with a study on SnPb and lead-free soldered joint reliability of PLCC devices with different lead counts under three kinds of temperature cycle profiles, which is based on non-linear finite element method. By analyzing the stress of soldered joints, it is found that the largest stress is at the area between the soldered joints and the leads, and analysis results indicate that the yon Mises stress at the location slightly increases with the increase of lead counts. For PLCC with 84 leads the soldered joints was modeled for three typical loading (273 -398 K, 218 -398 K and 198 -398 K) in order to study the influence of acceleration factors on the reliability of soldered joints. And the estimation of equivalent plastic strain of three different lead-free solder alloys ( Sn3.8AG0. 7Cu, Sn3.5Ag and Sn37Pb ) was also carried out.展开更多
Selective laser melting(SLM)is an emerging additive manufacturing technology for fabricating aluminum alloys and aluminum matrix composites.Nevertheless,it remains unclear how to improve the properties of laser manufa...Selective laser melting(SLM)is an emerging additive manufacturing technology for fabricating aluminum alloys and aluminum matrix composites.Nevertheless,it remains unclear how to improve the properties of laser manufactured aluminum alloy by adding ceramic reinforcing particles.Here the effect of trace addition of TiB2 ceramic(1%weight fraction)on microstructural and mechanical properties of SLM-produced AlSi10Mg composite parts was investigated.The densification level increased with increasing laser power and decreasing scan speed.A near fully dense composite part(99.37%)with smooth surface morphology and elevated inter-layer bonding was successfully obtained.A decrease of lattice plane distance was identified by X-ray diffraction with the laser scan speed decreased,which implied that the crystal lattices were distorted due to the dissolution of Si and TiB2 particles.A homogeneous composite microstructure with the distribution of surface-smoothened TiB2 particles was present,and a small amount of Si particles precipitated at the interface between reinforcing particles and matrix.In contrast to the AlSi10Mg alloy,the composites showed a stabilized microhardness distribution.A higher ultimate tensile strength of 380.0 MPa,yield strength of 250.4 MPa and elongation of 3.43%were obtained even with a trace amount of ceramic addition.The improvement of tensile properties can be attributed to multiple mechanisms including solid solution strengthening,load-bearing strengthening and dispersion strengthening.This research provides a theoretical basis for ceramic reinforced aluminum matrix composites by additive manufacturing.展开更多
Effect of small addition of rare earth on Sn-Ag-Cu solder was investigated by finite element method based on creep model of low stress and high stress and experiments respectively.It was found that addition of rare ea...Effect of small addition of rare earth on Sn-Ag-Cu solder was investigated by finite element method based on creep model of low stress and high stress and experiments respectively.It was found that addition of rare earths evidently improved the resistance to creep deformation of the solder, so that the reliability of Sn-Ag-Cu-Ce solder joint could be improved remarkably.Mechanical testing and microstructural analysis results showed that, mechanical properties of alloys bearing Ce were better than that of the original alloy, and the optimum content of Ce was about 0.03wt.%.After aging intermetallic compound between solder joint and Cu substrate was observed and analyzed by X-ray diffraction(XRD), scanning electron micrographs(SEM) and energy dispersive X-ray fluorescence spectrometer(EDX).Results showed that the thickness of intermetallic compound layer would became thinner when the addition of Ce was about 0.03wt.%, and the grains of intermetallic compound became finer, and the microstructure was more homogeneous than that in the original Sn-Ag-Cu/Cu interface.展开更多
The finite element method(FEM) is used to analyze the effects of lead widths and pitches on reliability of soldered joints. The optimum simulation for QFP devices is also researched. The results indicate that when t...The finite element method(FEM) is used to analyze the effects of lead widths and pitches on reliability of soldered joints. The optimum simulation for QFP devices is also researched. The results indicate that when the lead pitches are the same, the maximum equivalent stress of the soldered joints increases with the increasing of lead widths, while the reliability of the soldered joints reduces. When the lead widths are the same, the maximum equivalent stress of the soldered joints doesn't decrease completely with the increasing of lead pitches, a minimum value of the maximum equivalent stress values exists in all the curves. Under this condition the maximum equivalent stress of the soldewed joints is relatively the least, the reliability of soldered joints is high and the assembly is excellent. The simulating results indicate the best parameter: The lead width is 0.2 mm and lead pitch is 0.3 mm (the distance between two leads is 0.1 mm), which are benefited for the micromation of QFP devices now. The minimum value of the maximum equivalent stress of soldered joints exists while lead width is 0.25 mm and lead pitch is 0.35 mm (the distance between two leads is 0.1 mm), the devices can serve for a long time and the reliability is the highest, the assembly is excellent. The simulating results also indicate the fact that the lead width is 0.15 mm and lead pitch is 0.2 mm maybe the limit of QFP, which is significant for the high lead count and micromation of assembly.展开更多
We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holdin...We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holding time on crystalline, microstructure and content of aluminum titanate materials to determine the preferred calcining temperature and holding time. XRD and SEM methods were utilized to characterize the crystalline and microstructure of each specimen, Rietveld Quantification software was used for the determination of different crystalline contents of specimens, and Philips plus software was applied to determine the cell parameters of aluminium titanate in different specimens. According to the experimental results, preferred calcining temperature is determined as 1400℃ and preferred holding time is 2 h, at which the grains of aluminum titanate grow completely and the purity of aluminum titanate is 97.2wt%.展开更多
The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show ...The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show that the addition reaction of G with U under the conditions mainly involves the reactions of U with protonated glyoxal (p-G), protonated 2,2-dihy- droxyacetaldehyde (p-G 1) and protonated bis-hemdiol (p-G2) to form two important carbocation reactive intermediates of C-p-UG and C-p-UG1, and two important hydroxyl compounds of UG and UG1. These compounds play important roles in the formation of UG resin. According to the result of quantum chemical calculation, UG resin was synthesized successfully under weak acid conditions. The UG resin was characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), ultraviolet and visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT1R) and nuclear magnetic resonance spectroscopy (13CNMR and 1HNMR). These instrumental analytical results agree with each other and further confirm the addition reaction pathway of glyoxal with urea proposed by quantum chemical calculation.展开更多
Large-area and high-quality two-dimensional crystals are the basis for the development of the next-generation electronic and optical devices.The synthesis of two-dimensional materials in wafer scales is the first crit...Large-area and high-quality two-dimensional crystals are the basis for the development of the next-generation electronic and optical devices.The synthesis of two-dimensional materials in wafer scales is the first critical step for future technology uptake by the industries;however,currently presented as a significant challenge.Substantial efforts have been devoted to producing atomically thin two-dimensional materials with large lateral dimensions,controllable and uniform thicknesses,large crystal domains and minimum defects.In this review,recent advances in synthetic routes to obtain high-quality two-dimensional crystals with lateral sizes exceeding a hundred micrometres are outlined.Applications of the achieved large-area two-dimensional crystals in electronics and optoelectronics are summarised,and advantages and disadvantages of each approach considering ease of the synthesis,defects,grain sizes and uniformity are discussed.展开更多
Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanica...Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52225503)National Key Research and Development Program of China(Grant No.2022YFB3805701)+1 种基金Development Program of Jiangsu Province(Grant Nos.BE2022069 and BE2022069-1)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX21-0207).
文摘Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities.
基金supported by the National Key Research and Development Project Intergovernmental International Science and Technology Innovation Cooperation(2022YFE0109400)Leading Edge Technology of Jiangsu Province(BK20220009,BK20202008)+1 种基金a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the tests supported from Center for Microscopy and Analysis,Nanjing University of Aeronautics and Astronautics
文摘Metal-covalent organic frameworks(MCOF)as a bridge between covalent organic framework(COF)and metal organic framework(MOF)possess the characteristics of open metal sites,structure stability,crystallinity,tunability as well as porosity,but still in its infancy.In this work,a covalent organic framework DT-COF with a keto-enamine structure synthesized from the condensation of 3,3'-dihydroxybiphenyl diamine(DHBD)and triformylphloroglucinol(TFP)was coordinated with Cu^(2+)by a simple post-modification method to a obtain a copper-coordinated metal-covalent organic framework of Cu-DT COF.The isomerization from a keto-enamine structure of DT-COF to a enol-imine structure of Cu-DT COF is induced due to the coordination interaction of Cu^(2+).The structure change of Cu-DT COF induces the change of the electron distribution in the Cu-DT COF,which greatly promotes the activation and deep Li-storage behavior of the COF skeleton.As anode material for lithium-ion batteries(LIBs),Cu-DT COF exhibits greatly improved electrochemical performance,retaining the specific capacities of 760 mAh g^(-1)after 200 cycles and 505 mAh g^(-1)after 500 cycles at a current density of 0.5 A g^(-1).The preliminary lithium storage mechanism studies indicate that Cu^(2+)is also involved in the lithium storage process.A possible mechanism for Cu-DT COF was proposed on the basis of FT-IR,XPS,EPR characterization and electrochemical analysis.This work enlightens a novel strategy to improve the energy storage performance of COF and promotes the application of COF and MCOF in LIBs.
基金supported by the National Nature Science Foundation of China (Nos. 51971111, 52273247)the facilities in the Center for Microscopy and Analysis at Nanjing University of Aeronautics and Astronautics and the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics (No. ILA220461A22)。
文摘Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ polyaniline(PANI)/silver nanowires(Ag NWs) composites with a “branch-trunk” interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional(1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of Ag NWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI(branch) was firmly attached to the CF(trunk) through polydopamine(PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.
基金supported by Jiangsu Province Biomass Energy and Materials Laboratory,China(Grant No.JSBEM-S-202007).
文摘Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. D5000210522 and D5000200408)Jiangsu Planned Projects for Postdoctoral Research Funds, National Natural Science Foundation of China [grant number 51772151]+2 种基金Natural Science Foundation of Shaanxi Province (Grant No. 2021JQ-117)Basic Research Programs of Taicang (Grant No.TC2020JC10)Natural Science Foundation of Shandong Province (Grant No. ZR2020QE180)
文摘In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The microstructure images indicated that the SiC fillers were successfully prepared in the skeleton pores of the Ni/C foam.The influence of the PIP cycles on the microwave absorption performances was researched,and the results indicated that after the primary PIP process,Ni/C@SiC-I possessed the optimal microwave absorbing performance with a minimum reflection loss(RL)of-25.87 d B at 5.28 GHz and 5.00 mm.Besides,the RL values could be below-10.00 dB from 5.88 GHz to 7.74 GHz when the corresponding matching thickness was 3.85 mm.However,the microwave absorption properties of Ni/C@SiC-II and Ni/C@SiC-Ⅲwere tremendously degraded as the PIP times increased.At last,the electromagnetic parameter,dielectric loss,attenuation constant as well as impedance matching coefficient were further investigated to analyze the absorbing mechanism,which opened a new path for the certain scientific evaluation of the absorbing materials and had extremely important to the defence technology.
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金supported by the National Natural Science Foundation of China (No.21908049,52274298,and 51974114)Hunan Provincial Natural Science Foundation of China (No.2022JJ40035,2020JJ4175,2024JJ4022,2023JJ30277)+2 种基金Science and Technology Talents Lifting Project of Hunan Province (No.2022TJ-N16)Open Fund of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing (K1:24-09)Postdoctoral Fellowship Program (No.GZC20233205)。
文摘Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts.
基金the National Natural Science Foundations of China(Grant Number:51772247).
文摘With the continuous demand of material performance,the development of materials is rapid,and the professional curriculum teaching of“new inorganic materials”as well as its teaching methods related to the internet mandate a reform,in order to meet the needs of innovative high-quality personnel training.The update and optimization of the teaching content and methods assisted by the internet meet the needs of modern teaching and research work.More than 90%of students believe that internet teaching is conducive to the understanding of classroom knowledge and the development of innovative projects.
基金financial support from the National Natural Science Foundation of China(31771081,51472259)the Science and Technology Commission of Shanghai Municipality(18ZR1445100)Beijing Forestry University Outstanding Young Talent Cultivation Project(2019JQ03014).
文摘As the rapid development of portable and wearable devices,different electromagnetic interference(EMI)shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution.However,limited EMI shielding materials are successfully used in practical applications,due to the heavy thickness and absence of sufficient strength or flexibility.Herein,an ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure is constructed for EMI shielding application via a facile alternating vacuum-assisted filtration process.The composite paper exhibits outstanding mechanical properties with a tensile strength of 97.9±5.0 MPa and a fracture strain of 4.6±0.2%.Particularly,the paper shows a high electrical conductivity of 2506.6 S m?1 and EMI shielding effectiveness(EMI SE)of 38.4 dB due to the sandwich structure in improving EMI SE,and the gradient structure on regulating the contributions from reflection and absorption.This strategy is of great significance in fabricating ultrathin and flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene-based composite materials.
基金This study was supported by the Youth Program of National Natural Science Foundation of China(No.51605473)the National Key R&D Program of China(No.2018YFB1105801).
文摘FeNiCoCrTi0.5 coatings with different process parameters were fabricated by laser cladding. The macro-morphology, phase, microstructure, hardness, and wear resistance of each coating were studied. The smoothness and dilution rate of the FeNiCoCrTi0.5 coating generally increased with the increase of specific energy(Es), which is the laser irradiation energy received by a unit area. FeNiCoCrTi0.5 coatings at different parameters had bcc, fcc, and Ti-rich phases as well as equiaxed, dendritic, and columnar structures. When Es increased, the size of each structure increased and the distribution area of the columnar and dendritic structures changed. The prepared FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 had the highest hardness and the best wear resistance, the highest hardness of the coating reached HV 498.37, which is twice the substrate hardness. The average hardness of the FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm-2 was 15.8% higher than the lowest average hardness of the coating with the Es of 108.33 J·mm-2. The worn surface morphologies indicate that the FeNiCoCrTi0.5 coatings exhibited abrasive wear.
基金financial support from the National Nature Science Foundation of China(No.51971111).
文摘Developing ultrabroad radar-infrared compatible stealth materials has turned into a research hotspot,which is still a problem to be solved.Herein,the copper sulfide wrapped by reduced graphene oxide to obtain three-dimensional(3D)porous network composite aerogels(CuS@rGO)were synthesized via thermal reduction ways(hydrothermal,ascorbic acid reduction)and freeze-drying strategy.It was discovered that the phase components(rGO and CuS phases)and micro/nano structure(microporous and nanosheet)were well-modified by modulating the additive amounts of CuS and changing the reduction ways,which resulted in the variation of the pore structure,defects,complex permittivity,microwave absorption,radar cross section(RCS)reduction value and infrared(IR)emissivity.Notably,the obtained CuS@rGO aerogels with a single dielectric loss type can achieve an ultrabroad bandwidth of 8.44 GHz at 2.8 mm with the low filler content of 6 wt%by a hydrothermal method.Besides,the composite aerogel via the ascorbic acid reduction realizes the minimum reflection loss(RL_(min))of−60.3 dB with the lower filler content of 2 wt%.The RCS reduction value can reach 53.3 dB m^(2),which effectively reduces the probability of the target being detected by the radar detector.Furthermore,the laminated porous architecture and multicomponent endowed composite aerogels with thermal insulation and IR stealth versatility.Thus,this work offers a facile method to design and develop porous rGO-based composite aerogel absorbers with radar-IR compatible stealth.
文摘A three-dimensional laser absorption model based on ray tracing was established to describe the coupled interaction of a laser beam with particles in the powder layers of pure tungsten(W)material processed by selective laser melting(SLM).The influence of particle size on the powder-to-laser absorptivity and underlying absorption behavior was investigated.An intrinsic relationship between the absorption,distribution of absorbed irradiance within the powder layers,and surface morphology and geometric characteristics(e.g.,contact angle,width and height of tracks,and remelted depth)of the laser scanning tracks is presented here.Simulation conclusions indicate that the absorptivity of the powder layers considerably exceeds the single powder particle value or the dense solid material value.With an increase in particle size,the powder layer absorbs less laser energy.The maximum absorptivity of theWpowder layers reached 0.6030 at the particle size of 5 lm.The distribution of laser irradiance on the particle surface was sensitive to particle size,azimuthal angle,and the position of the powder particles on the substrate.The maximum irradiance in the powder layers decreased from 1.117×10^–3 to 0.85×10^–3W·μm^-2 and the contour of the irradiance distribution in the center of the irradiated area gradually contracted when the particle size increased from 5 to 45 lm.An experimental study on the surface morphologies and cross-sectional geometric characteristics of SLM-fabricated W material was performed,and the experimental results validated the mechanisms of the powder-to-laser-absorption behavior that were obtained in simulations.This work provides a scientific basis for the application of the ray-tracing model to predict the wetting and spreading ability of melted tracks during SLM additive manufacturing in order to yield a sound laser processability.
基金the Jiangsu General Colleges and Universities Postgraduate Scientific Research Innovative Plan under Grant No. CX07B_087zthe Six Kind Skilled Personnel Project of Jiangsu Province,under Grant No. 06-E-020
文摘This paper deals with a study on SnPb and lead-free soldered joint reliability of PLCC devices with different lead counts under three kinds of temperature cycle profiles, which is based on non-linear finite element method. By analyzing the stress of soldered joints, it is found that the largest stress is at the area between the soldered joints and the leads, and analysis results indicate that the yon Mises stress at the location slightly increases with the increase of lead counts. For PLCC with 84 leads the soldered joints was modeled for three typical loading (273 -398 K, 218 -398 K and 198 -398 K) in order to study the influence of acceleration factors on the reliability of soldered joints. And the estimation of equivalent plastic strain of three different lead-free solder alloys ( Sn3.8AG0. 7Cu, Sn3.5Ag and Sn37Pb ) was also carried out.
基金Supported by National Key Research and Development Program“Additive Manufacturing and Laser Manufacturing”of China(Grant Nos.2016YFB1100101,2018YFB1106302)National Natural Science Foundation of China(Grant No.51735005)+4 种基金Jiangsu Provincial Natural Science Foundation for Youth(Grant No.BK20180439)National Natural Science Foundation of China for Creative Research Groups(Grant No.51921003)The 15th Batch of“Six Talents Peaks”Innovative Talents Team Program(Grant No.TD-GDZB-001)2017 Excellent Scientific and Technological Innovation Teams of Universities in Jiangsu ProvinceNanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund Project(Grant No.kfjj20190606).
文摘Selective laser melting(SLM)is an emerging additive manufacturing technology for fabricating aluminum alloys and aluminum matrix composites.Nevertheless,it remains unclear how to improve the properties of laser manufactured aluminum alloy by adding ceramic reinforcing particles.Here the effect of trace addition of TiB2 ceramic(1%weight fraction)on microstructural and mechanical properties of SLM-produced AlSi10Mg composite parts was investigated.The densification level increased with increasing laser power and decreasing scan speed.A near fully dense composite part(99.37%)with smooth surface morphology and elevated inter-layer bonding was successfully obtained.A decrease of lattice plane distance was identified by X-ray diffraction with the laser scan speed decreased,which implied that the crystal lattices were distorted due to the dissolution of Si and TiB2 particles.A homogeneous composite microstructure with the distribution of surface-smoothened TiB2 particles was present,and a small amount of Si particles precipitated at the interface between reinforcing particles and matrix.In contrast to the AlSi10Mg alloy,the composites showed a stabilized microhardness distribution.A higher ultimate tensile strength of 380.0 MPa,yield strength of 250.4 MPa and elongation of 3.43%were obtained even with a trace amount of ceramic addition.The improvement of tensile properties can be attributed to multiple mechanisms including solid solution strengthening,load-bearing strengthening and dispersion strengthening.This research provides a theoretical basis for ceramic reinforced aluminum matrix composites by additive manufacturing.
文摘Effect of small addition of rare earth on Sn-Ag-Cu solder was investigated by finite element method based on creep model of low stress and high stress and experiments respectively.It was found that addition of rare earths evidently improved the resistance to creep deformation of the solder, so that the reliability of Sn-Ag-Cu-Ce solder joint could be improved remarkably.Mechanical testing and microstructural analysis results showed that, mechanical properties of alloys bearing Ce were better than that of the original alloy, and the optimum content of Ce was about 0.03wt.%.After aging intermetallic compound between solder joint and Cu substrate was observed and analyzed by X-ray diffraction(XRD), scanning electron micrographs(SEM) and energy dispersive X-ray fluorescence spectrometer(EDX).Results showed that the thickness of intermetallic compound layer would became thinner when the addition of Ce was about 0.03wt.%, and the grains of intermetallic compound became finer, and the microstructure was more homogeneous than that in the original Sn-Ag-Cu/Cu interface.
基金This project is supported by Provincial Six Kind Skilled Personnel Project of Jiangsu,China(No.06-E-020).
文摘The finite element method(FEM) is used to analyze the effects of lead widths and pitches on reliability of soldered joints. The optimum simulation for QFP devices is also researched. The results indicate that when the lead pitches are the same, the maximum equivalent stress of the soldered joints increases with the increasing of lead widths, while the reliability of the soldered joints reduces. When the lead widths are the same, the maximum equivalent stress of the soldered joints doesn't decrease completely with the increasing of lead pitches, a minimum value of the maximum equivalent stress values exists in all the curves. Under this condition the maximum equivalent stress of the soldewed joints is relatively the least, the reliability of soldered joints is high and the assembly is excellent. The simulating results indicate the best parameter: The lead width is 0.2 mm and lead pitch is 0.3 mm (the distance between two leads is 0.1 mm), which are benefited for the micromation of QFP devices now. The minimum value of the maximum equivalent stress of soldered joints exists while lead width is 0.25 mm and lead pitch is 0.35 mm (the distance between two leads is 0.1 mm), the devices can serve for a long time and the reliability is the highest, the assembly is excellent. The simulating results also indicate the fact that the lead width is 0.15 mm and lead pitch is 0.2 mm maybe the limit of QFP, which is significant for the high lead count and micromation of assembly.
基金supported by the Natural Science Foundation of Fujian Province (No. T08J0129)the Science and Technology Developing Foundation of Fuzhou University (No. 2008-XQ-001)2007-year New Century Talents Supporting Program of Fujian Province (No.XSJRC2007-17)
文摘We aim in this research at synthesizing high-purity aluminium titanate with sludge from the aluminium profile factory by shock cooling method, and mainly discuss the effect of calcining reaction temperature and holding time on crystalline, microstructure and content of aluminum titanate materials to determine the preferred calcining temperature and holding time. XRD and SEM methods were utilized to characterize the crystalline and microstructure of each specimen, Rietveld Quantification software was used for the determination of different crystalline contents of specimens, and Philips plus software was applied to determine the cell parameters of aluminium titanate in different specimens. According to the experimental results, preferred calcining temperature is determined as 1400℃ and preferred holding time is 2 h, at which the grains of aluminum titanate grow completely and the purity of aluminum titanate is 97.2wt%.
基金Supported by the Key Program of the National Natural Science Foundation of China(No.30930074)National Natural Science Foundation of China(No.31260160)
文摘The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show that the addition reaction of G with U under the conditions mainly involves the reactions of U with protonated glyoxal (p-G), protonated 2,2-dihy- droxyacetaldehyde (p-G 1) and protonated bis-hemdiol (p-G2) to form two important carbocation reactive intermediates of C-p-UG and C-p-UG1, and two important hydroxyl compounds of UG and UG1. These compounds play important roles in the formation of UG resin. According to the result of quantum chemical calculation, UG resin was synthesized successfully under weak acid conditions. The UG resin was characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), ultraviolet and visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT1R) and nuclear magnetic resonance spectroscopy (13CNMR and 1HNMR). These instrumental analytical results agree with each other and further confirm the addition reaction pathway of glyoxal with urea proposed by quantum chemical calculation.
基金the financial support from“National Natural Science Foundation of China”(No.51850410506)。
文摘Large-area and high-quality two-dimensional crystals are the basis for the development of the next-generation electronic and optical devices.The synthesis of two-dimensional materials in wafer scales is the first critical step for future technology uptake by the industries;however,currently presented as a significant challenge.Substantial efforts have been devoted to producing atomically thin two-dimensional materials with large lateral dimensions,controllable and uniform thicknesses,large crystal domains and minimum defects.In this review,recent advances in synthetic routes to obtain high-quality two-dimensional crystals with lateral sizes exceeding a hundred micrometres are outlined.Applications of the achieved large-area two-dimensional crystals in electronics and optoelectronics are summarised,and advantages and disadvantages of each approach considering ease of the synthesis,defects,grain sizes and uniformity are discussed.
基金supported by the financial support from the National Natural Science Foundation of China(Nos.51735005 and U1930207)the Basic Strengthening Program(No.2019-JCJQ-JJ-331)+1 种基金National Natural Science Founda-tion of China for Creative Research Groups(No.51921003)the 15th Batch of‘Six Talents Peaks’Innovative Talents Team Program(No.TD-GDZB-001).
文摘Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM.