期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Additive Manufacturing Process of Electric Power Fittings Fabricated by Metal Droplet Deposition
1
作者 Haihua Wu Guangxi Zhao Zhengying Wei 《Mechanical Engineering Science》 2019年第1期26-31,共6页
Metal droplet deposition is a kind of additive manufacturing(3D Printing)technique that fabricates near-net part through droplets deposition with lower cost and higher efficiency.This paper proposed a solution to prob... Metal droplet deposition is a kind of additive manufacturing(3D Printing)technique that fabricates near-net part through droplets deposition with lower cost and higher efficiency.This paper proposed a solution to problems of electric power fittings that large inventories,high procurement costs,low manufacturing efficiency and transportation cost.Using additive Manufacturing technique-metal droplet deposition,electric power fittings fabricated on power construction site.This paper describes the manufacturing process of typical thin-walled samples(the structure optimized based on additive manufacturing principle)and ball head rings of electric power fittings.Aiming at the integral AM forming for ball and ball socket electric power fitting workpiece,a novel easy removal forming support material(ceramics and gypsum mixed with UV cured resin)have been developed.Here this support material was used to fabricate nested integral workpieces.Dimensional accuracy and microstructure of the test pieces were analyzed.The error of the height and width of the forming workpiece is within 5%.No obvious overlap trace(such as overlap line and cracks)observed,and the internal microstructure is equiaxial crystal.The average density of the component is 99.51%,which measured by drainage method and 13.39%higher than the cast raw material. 展开更多
关键词 ADDITIVE manufacturing METAL droplets Electric power fittings THIN-WALLED sample BALL head RINGS workpiece.
下载PDF
Influence of Cavitation on Unsteady Vortical Flows in a Side Channel Pump
2
作者 Yefang Wang Fan Zhang +3 位作者 Shouqi Yuan Ke Chen Feng Hong Desmond Appiah 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期171-189,共19页
Previous investigation on side channel pump mainly concentrates on parameter optimization and internal unsteady vortical flows.However,cavitation is prone to occur in a side channel pump,which is a challenging issue i... Previous investigation on side channel pump mainly concentrates on parameter optimization and internal unsteady vortical flows.However,cavitation is prone to occur in a side channel pump,which is a challenging issue in promoting performance.In the present study,the cavitating flow is investigated numerically by the turbulence model of SAS combined with the Zwart cavitation model.The vapors inside the side channel pump firstly occur in the impeller passage near the inlet and then spread gradually to the downstream passages with the decrease of NPSHa.Moreover,a strong adverse pressure gradient is presented at the end of the cavity closure region,which leads to cavity shedding from the wall.The small scaled vortices in each passage reduce significantly and gather into larger vortices due to the cavitation.Comparing the three terms of vorticity transport equation with the vapor volume fraction and vorticity distributions,it is found that the stretching term is dominant and responsible for the vorticity production and evolution in cavitating flows.In addition,the magnitudes of the stretching term decrease once the cavitation occurs,while the values of dilatation are high in the cavity region and increase with the decreasing NPSHa.Even though the magnitude of the baroclinic torque term is smaller than vortex stretching and dilatation terms,it is important for the vorticity production along the cavity surface and near the cavity closure region.The pressure fluctuations in the impeller and side channel tend to be stronger due to the cavitation.The primary frequency of monitor points in the impeller is 24.94 Hz and in the side channel is 598.05 Hz.They are quite corresponding to the shaft frequency of 25 Hz(fshaft=1/n=25 Hz)and the blade frequency of 600 Hz(fblade=Z/n=600 Hz)respectively.This study complements the investigation on cavitation in the side channel pump,which could provide the theoretical foundation for further optimization of performance. 展开更多
关键词 Side channel pump Vortical flows CAVITATION Vortex-cavitation interaction Pressure fluctuation
下载PDF
Optimization of Chinese solar greenhouse building parameters based on CFD simulation and entropy weight method
3
作者 Fen He Changqing Si +5 位作者 Xiaoming Ding Zhenjun Gao Binbin Gong Fei Qi Yilei Yin Qian Feng 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第6期48-55,共8页
The building parameters of Chinese solar greenhouse(CSG)directly affect the front roof lighting and indoor thermal environment.In order to obtain the optimal parameter combination,a building parameter optimization met... The building parameters of Chinese solar greenhouse(CSG)directly affect the front roof lighting and indoor thermal environment.In order to obtain the optimal parameter combination,a building parameter optimization method based on computational fluid dynamics(CFD)simulation and entropy weight method was proposed.Firstly,a three-dimensional thermal and humidity environment model of CSG was constructed considering the coupling effect of soil,crop,and back wall based on CFD.The reliability of the model was validated through experiments in a CSG of Yongqing County,Hebei Province of China.Then,the indoor air temperature rise rate,air temperature and humidity uneven coefficient,and average air temperature and humidity were selected as the evaluation indicators of CSG thermal and humidity environment.The ridge height,back wall height and the horizontal projection of back roof of CSG were selected as the three factors of the orthogonal test plan,and a three-factor and four-level plan was designed,resulting in 16 different parameter combinations.By use of CFD simulation,the thermal and humidity environment evaluation indicators under different parameter combinations were calculated.The entropy weight method was used to assign weights to the evaluation indicators,and the comprehensive evaluation indicators of CSG thermal and humidity environment were obtained based on the linear weighting principle.By comparing comprehensive evaluation indicators,the optimal combination of building parameters was obtained with a ridge height of 5.72 m,a back wall height of 3.2 m,and a horizontal projection of 2.1 m on the back roof.The research results can provide a practical and feasible method for optimizing the building parameters of CSG,and provided theoretical guidance for the structural design and optimization of CSG. 展开更多
关键词 CSG thermal and humidity environment CFD simulation entropy weight method building parameter optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部