Steel samples with size of 10 mm× 10 mm×5 mm were cut clown from a hot rolled Mn steel microalloyed by Ti, Cr and Nb and produced by compact strip production (CSP) technology. The samples were annealed at ...Steel samples with size of 10 mm× 10 mm×5 mm were cut clown from a hot rolled Mn steel microalloyed by Ti, Cr and Nb and produced by compact strip production (CSP) technology. The samples were annealed at 950 ℃ for different time firstly, and then hot rolled or cooled in the air, in water and in furnace, respectively. Auger elee tron spectroscopy (AES) was used to study the effects of annealing and hot roiling on the segregation of arsenic at grain boundary (GB) in the steel. The results indicated that a higher content of arsenic was found at grain boundaries than in the matrix when the steel was annealed at 950 ℃ for 2 h and then cooled to room temperature by water quenching. But the content of arsenic at grain boundaries was similar to that in the matrix when the steel was an- nealed at 950 ℃ for 2 h and then cooled to room temperature by furnace cooling. A longer holding time, such as 12 h and 36 h at 950 ℃, resulted in a similar arsenic content at grain boundaries to that in the matrix of the steels. Hot rolling led to a similar content of arsenic at grain boundaries and within grains in the steels as well.展开更多
基金Sponsored by National Natural Science Foundation of China(50874083)China International Scientific and Technological Cooperation Projects(2010DFA52130)Hubei International Scientific and Technological Cooperation Project(2011BFA013)
文摘Steel samples with size of 10 mm× 10 mm×5 mm were cut clown from a hot rolled Mn steel microalloyed by Ti, Cr and Nb and produced by compact strip production (CSP) technology. The samples were annealed at 950 ℃ for different time firstly, and then hot rolled or cooled in the air, in water and in furnace, respectively. Auger elee tron spectroscopy (AES) was used to study the effects of annealing and hot roiling on the segregation of arsenic at grain boundary (GB) in the steel. The results indicated that a higher content of arsenic was found at grain boundaries than in the matrix when the steel was annealed at 950 ℃ for 2 h and then cooled to room temperature by water quenching. But the content of arsenic at grain boundaries was similar to that in the matrix when the steel was an- nealed at 950 ℃ for 2 h and then cooled to room temperature by furnace cooling. A longer holding time, such as 12 h and 36 h at 950 ℃, resulted in a similar arsenic content at grain boundaries to that in the matrix of the steels. Hot rolling led to a similar content of arsenic at grain boundaries and within grains in the steels as well.