期刊文献+
共找到1,360篇文章
< 1 2 68 >
每页显示 20 50 100
Laser powder bed fusion of a Ni3Al-based intermetallic alloy with tailored microstructure and superior mechanical performance 被引量:1
1
作者 Mingyu Liu Jiang Wang +6 位作者 Tao Hu Songzhe Xu Sansan Shuai Weidong Xuan Shuo Yin Chaoyue Chen Zhongming Ren 《Advanced Powder Materials》 2024年第1期90-101,共12页
Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pr... Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pressing(HIP)treatment of Ni3Al-based IC^(-2)21 M alloy with a highγ0 volume fraction.The as-built samples exhibits unavoidable solidification cracking and ductility dip cracking,and the laser parameter optimization can reduce the crack density to 1.34 mm/mm^(2).Transmission electron microscope(TEM)analysis reveals ultra-fine nanoscaleγ0 phases in the as-built samples due to the high cooling rate during rapid solidification.After HIP treatment,a fully dense structure without cracking defects is achieved,which exhibits an equiaxed structure with grain size~120-180μm and irregularly shapedγ0 precipitates~1-3μm with a prominently high fraction of 86%.The room-temperature tensile test of as-built samples shows a high ultimate tensile strength(σUTS)of 1039.7 MPa and low fracture elongation of 6.4%.After HIP treatment,a significant improvement in ductility(15.7%)and a slight loss of strength(σUTS of 831.7 MPa)are obtained by eliminating the crack defects.Both the as-built and HIP samples exhibit retained highσUTS values of 589.8 MPa and 786.2 MPa,respectively,at 900C.The HIP samples exhibita slight decrease in ductility to~12.9%,indicating excellent high-temperature mechanical performance.Moreover,the abnormal increase in strength and decrease in ductility suggest the critical role of a highγ0 fraction in cracking formation.The intrinsic heat treatment during repeating thermal cycles can induce brittleness and trigger cracking initiation in the heat-affected zone with notable deteriorating ductility.The results indicate that the combination of LPBF and HIP can effectively reduce the crack density and enhance the mechanical properties of Ni_(3)Al-based alloy,making it a promising material for high-temperature applications. 展开更多
关键词 Laser powder bed fusion Ni3Al-Based alloy Hot isostatic pressing Solidification cracking High-temperature tensile performance
下载PDF
Influence of the mechanical properties of materials on the ultimate pressure-bearing capability of a pressure-preserving controller
2
作者 Xiao-Jun Shi He-Ping Xie +5 位作者 Cong Li Gui-Kang Liu Zi-Jie Wei Tian-Yu Wang Ju Li Qiu-Yue Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3558-3574,共17页
The pressure-preserving controller is the core part of deep in-situ pressure-preserving coring(IPP-Coring) system, and its pressure-preserving capability is the key to IPP-Coring technology. To achieve a good understa... The pressure-preserving controller is the core part of deep in-situ pressure-preserving coring(IPP-Coring) system, and its pressure-preserving capability is the key to IPP-Coring technology. To achieve a good understanding of the influence of mechanical properties of materials on the ultimate pressure-bearing capability(UPB-Capability) of the pressure-preserving controller, the IPP-Coring experimental platform was developed to test the UPB-Capability of pressure-preserving controllers of four different materials. The experimental results show that the UPB-Capability of pressure-preserving controllers with different material varies greatly. A numerical model of the pressure-preserving controller was developed to study the influences of mechanical parameters of materials on the UPB-Capability of the pressurepreserving controller after the accuracy of the numerical model is verified by experiments. The results indicate that the yield strength(YS) and Poisson's ratio(PR) of the material have little effect on the UPB-Capability of the pressure-preserving controller, whereas the elastic modulus(EM) of the material has a significant effect. A generalized model of the UPB-Capability of the pressure-preserving controller is developed to reveal the mechanism of the influence of material properties on the UPB-Capability of the pressure-preserving controllers. Considering these results, the future optimization direction of the pressure-preserving controller and material selection scheme in practical engineering applications of the pressure-preserving controller are suggested. 展开更多
关键词 In-situ pressure-preserving coring Pressure-preserving controller Material properties Ultimate pressure-bearing capability
下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
3
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
下载PDF
Effect of post-weld heat treatment on microstructure and mechanical properties of welded joints of 6061-T6 aluminum alloy 被引量:12
4
作者 Jie YI Guan WANG +2 位作者 Shi-kang LI Zhi-wen LIU Yan-li GONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第10期2035-2046,共12页
6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and tim... 6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints. 展开更多
关键词 6061 aluminum alloy double-pulsed MIG welding post-weld heat treatment microstructure evolution mechanical property
下载PDF
Influence of CaCO_3 Whisker Content on Mechanical and Tribological Properties of Polyetheretherketone Composites 被引量:8
5
作者 Youxi LIN Chenghui GAO Ning LI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期584-588,共5页
The mechanical and tribological properties of polyetheretherketone (PEEK) composites filled with CaCO3 whisker in various content of 0~45% (wt pct) were investigated. The composite specimens were prepared by comp... The mechanical and tribological properties of polyetheretherketone (PEEK) composites filled with CaCO3 whisker in various content of 0~45% (wt pct) were investigated. The composite specimens were prepared by compression molding. Tribological testing of composites in dry wear mode against carbon steel ring was carried out on a MM200 block-on-ring apparatus. Data on neat PEEK were also included for comparison. It was observed that inclusion of CaCO3 whisker affected the most mechanical properties and the friction and wear in a beneficial way. With an increase in CaCO3 whisker content, friction coefficient continuously decreased but the trends in wear performance varied. The specific wear rate showed minima as 1.28×10^-6 mm^3/Nm for 25% CaCO3 whisker inclusion followed by a slow increase for further CaCO3 whisker addition. In terms of friction applications, when the tribological and mechanical properties are combined, the optimal content of CaCO3 whisker in the filled PEEK should be recommended as 15% to 20%. Fairly good correlations are observed in friction coefficient vs bending modulus and wear rate vs bending strength, confirming that the bending properties prove to be the most important tribology controlling parameters in the present work. 展开更多
关键词 CaCO3 whisker Polyetheretherketone (PEEK) Mechanical properties Tribological behaviour
下载PDF
Transformation mechanism and mechanical properties of commercially pure titanium 被引量:7
6
作者 徐春 朱文峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2162-2167,共6页
In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α t... In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α transformation kinetics of the grade-2 CP-Ti during continuous cooling was measured and its hot compression behavior was investigated using Gleeble-1500 thermal mechanical simulator. Dynamic CCT diagram confirms that cooling rate has an obvious effect on the start and finishing transformation and microstructures at room temperature. The critical cooling rate for γ-phase transforms to a phase is about 15℃/s. When the cooling rate is higher than 15 ℃/s, some β phases with fine granular shape remain residually into plate-like structure. The plate-like a phase forms at cooling rate lower than 2 ℃/s, serrate a phase forms at medium cooling rates, about 5-15℃/s. The flow stress behavior of grade-2 CP-Ti was investigated in a temperature range of 700-900℃ and strain rate of 3.6-40 mm/min. The results show that dynamic recrystallization, dynamic recovery and work-hardening obviously occur during hot deformation. Constitutive equation of grade-2 CP-Ti was established by analyzing the relationship of the deformation temperature, strain rate, deformation degree and deformation resistance. 展开更多
关键词 commercially pure titanium phase transition mechanical properties flow stress
下载PDF
Effect of Mn content on microstructure and mechanical properties of modified ZA-27 alloy 被引量:7
7
作者 李元元 龙雁 +2 位作者 陈维平 张大童 邵明 《中国有色金属学会会刊:英文版》 CSCD 2002年第6期1091-1094,共4页
ZA 27 alloys reinforced by Mn containing intermetallic compounds were prepared and the effect of Mn content on their mechanical properties were examined. By adding Mn, rare earth elements(RE) and Ti into ZA 27, experi... ZA 27 alloys reinforced by Mn containing intermetallic compounds were prepared and the effect of Mn content on their mechanical properties were examined. By adding Mn, rare earth elements(RE) and Ti into ZA 27, experimental alloys were fabricated by sand casting. The volume fraction, grain size and morphology of the Mn containing intermetallic compound phases vary with the changing of Mn content. Mechanical properties of the reinforced ZA 27 alloys at elevated temperatures were measured. The results show that the hardness, compressive strength and compressibility of experimental alloys increase with increasing Mn content until they reach a maximum at 0.5% Mn. Excessive and coarse hard phases would act as crack origins instead of dispersion strengthening particles. Best tensile properties of these alloys at elevated temperature can be achieved at a Mn content of 0.18 %. 展开更多
关键词 金属间化合物 机械性能 ZA-27合金 微结构
下载PDF
Mechanical properties of hydroxyapatite-zirconia coatings prepared by magnetron sputtering 被引量:4
8
作者 KONG De-jun LONG Dan +1 位作者 WU Yong-zhong ZHOU Chao-zheng 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期104-110,共7页
Hydroxyapatite (HA)-zirconium (ZrO2) composite coating was produced by magnetic sputtering on Ti6Al4V titanium alloy substrate, the coatings of 50HA-50ZrO2 and 75HA-25ZrO2 (mass fraction, %) were characterized b... Hydroxyapatite (HA)-zirconium (ZrO2) composite coating was produced by magnetic sputtering on Ti6Al4V titanium alloy substrate, the coatings of 50HA-50ZrO2 and 75HA-25ZrO2 (mass fraction, %) were characterized by scanning electron microscopy, energy disperse spectroscopy, X-ray diffraction and scratch test, respectively, and the effects of HA contents in the coating on residual stress were analyzed. The experimental results show that the phases of HA-ZrO2 composite coatings are HA, ZrO2 and Y2O3, and the HA has a certain decomposition in the combination process, producing TCP and CaO impurity phases. The porous surface of coating is conducive to the growth of bone tissue, and the surface roughness values of 50HA-50ZrO2 and 75HA-25ZrO2 are 1.61 μm and 2.92 μm, respectively. The coating interface is of mechanical integration, the bonding strength values of 50HA-50ZrO2 and 75HA-25ZrO2 are 30 N and 17.5 N, respectively, showing a downward trend with the HA contents increasing. The residual stress values in the coating of 50HA-50ZrO2 and 75HA-25ZrO2 are (-399.1±3.0) MPa, (-343.2±20.3) MPa, respectively, as a result, the appropriate increase of HA contents in the coating will reduce its residual stress. 展开更多
关键词 magnetron sputtering ZIRCONIA HYDROXYAPATITE surface morphology bonding strength
下载PDF
Study on inhomogeneous cooling behavior of extruded profile with unequal and large thicknesses during quenching using thermo-mechanical coupling model 被引量:6
9
作者 Zhi-wen LIU Jie YI +3 位作者 Shi-kang LI Wen-jie NIE Luo-xing LI Guan WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1211-1226,共16页
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica... The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°. 展开更多
关键词 aluminum profile unequal and large thicknesses water quenching heat transfer coefficient thermo-mechanical coupling model
下载PDF
NUMERICAL SIMULATION OF THE THERMO-MECHANICAL PROCESS FOR BEAM BLANK CONTINUOUS CASTING 被引量:8
10
作者 W. Chen Y.Z. Zhang +4 位作者 C.J. Zhang L.G. Zhu B.X. Wang W.G. Lu J.H. Ma 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第4期241-250,共10页
The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite elemen... The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting. 展开更多
关键词 beam blank continuous basting thermo-mechanical process SIMULATION
下载PDF
Microstructure and mechanical property of 2024/3003 gradient aluminum alloy 被引量:6
11
作者 张卫文 陈维平 +2 位作者 费劲 倪东惠 李元元 《Journal of Central South University of Technology》 2004年第2期128-133,共6页
gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope ... gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope and transmission electron microscope. And the mechanical properties of the alloy in pressed and heat-treated states were studied. The results show that the ingots with diameter of 65 mm and external thickness (about) 5.5 mm are obtained when the temperatures of the melt in the internal and external ladles are 1 023 and 1 003 K, respectively, and the nozzle diameter is 2.0 mm. The microstructures of the as-cast alloy consist of α(Al)+(θ(CuAl2))+S(Al2CuMg) in the internal region and (α(Al)+MnAl6) in the external region. The phases found in the internal and external layers coexist in the transition zone. The transition layer is maintained after plastic deformation and heat treatment of the alloy. The tensile strength, yield strength and elongation of the alloy are 300 MPa, 132 MPa and 16.0%, respectively, after T6 treatment. The tensile and yield strength are increased by 150.0% and (94.1%,) respectively, compared with that of 3003 aluminum alloy. The maximum hardness in the internal region of 2024/3003 gradient aluminum alloy can be increased from HRF 55 in the pressed state to HRF 70 in the heat-treated state. 展开更多
关键词 ALLOY gradient material MICROSTRUCTURE mechanical property
下载PDF
Mechanical properties and tribological behavior of a cast heat-resisting copper based alloy 被引量:5
12
作者 张卫文 夏伟 +2 位作者 温利平 吴苑标 潘国如 《Journal of Central South University of Technology》 2002年第4期235-239,共5页
Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the ... Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one sixth and one fortieth of that of C95500, respectively. The alloy is very suitable for ma nufacturing heat resisting and wear resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening. 展开更多
关键词 COPPER BASED ALLOY heat-resisting mechanical PROPERTY TRIBOLOGICAL behavior
下载PDF
A review on biocompatibility nature of hydrogels with 3D printing techniques,tissue engineering application and its future prospective 被引量:4
13
作者 Jabran Saroia Wang Yanen +3 位作者 Qinghua Wei Kun Zhang Tingli Lu Bo Zhang 《Bio-Design and Manufacturing》 SCIE 2018年第4期265-279,共15页
Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enha... Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enhancement in the production of hydrogel-based cellular scaffolds with the structural composition of ECM has been accelerated with involvement of rapid prototyping techniques.Basically,the recreation of ECM has been derived from naturally existed or synthetic hydrogelbased polymers.The rapid utilization of hydrogels in TE puts forward the scope of bioprinfing for the fabrication of the functional biological tissues,cartilage,skin and artificial organs.The main focus of the researchers is on biofabrication of the biomaterials with maintaining the biocompatibility,biodegradability and increasing growth efficiency.In this review, biological development in the structure and cross-linking connections of natural or synthetic hydrogels are discussed.The methods and design criteria that influence the chemical and mechanical properties and interaction of seeding cells before and after the implantations are also demonstrated.The methodology of bioprinting techniques along with recent development has also been reviewed.In the end,some capabilities and shortcomings are pointed out for further development of hydrogels-based scaffolds and selection of bioprinting technology depending on their application. 展开更多
关键词 HYDROGELS Extra-molecular matrix (ECM) BIOCOMPATIBILITY BIOPRINTING Tissue engineering
下载PDF
MECHANICAL-ELECTRIC COUPLING DYNAMICAL CHARACTERISTICS OF AN ULTRA-HIGH SPEED GRINDING MOTORIZED SPINDLE SYSTEM 被引量:23
14
作者 LUE Lang XIONG Wanli GAO Hang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期34-40,共7页
On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i... On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed. 展开更多
关键词 Ultra-high speed grinding Motorized spindle Mechanical-electric coupling Vibration Suppression
下载PDF
Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review 被引量:4
15
作者 Na Xiao Xu Guan +7 位作者 Dong Wang Haile Yan Minghui Cai Nan Jia Yudong Zhang Claude Esling Xiang Zhao Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1667-1679,共13页
Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c... Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c. HEAs is generally low, significantly limiting their practical applications. Recently, the alloying of W has been evidenced to be able to remarkably improve the mechanical properties of f.c.c. HEAs and is becoming a hot topic in the community of HEAs. To date, when W is introduced, multiple strengthening mechanisms, including solid-solution strengthening, precipitation strengthening (μphase,σphase, and b.c.c. phase), and grain-refinement strengthening, have been discovered to be activated or enhanced. Apart from mechanical properties, the addition of W improves corrosion resistance as W helps to form a dense WO_(3) film on the alloy surface. Until now, despite the extensive studies in the literature, there is no available review paper focusing on the W doping of the f.c.c. HEAs. In that context, the effects of W doping on f.c.c. HEAs were reviewed in this work from three aspects, i.e., microstructure,mechanical property, and corrosion resistance. We expect this work can advance the application of the W alloying strategy in the f.c.c. HEAs. 展开更多
关键词 high-entropy alloys lattice distortion W doping mechanical property precipitation
下载PDF
Effects of micro-alloying with Sc and Mn on microstructure and mechanical properties of Al-Mg based alloys 被引量:2
16
作者 陈显明 罗承萍 +1 位作者 潘青林 尹志民 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第5期1108-1112,共5页
An extensive investigation was made on the effects of micro-alloying with small amounts of Sc and Mn on the microstructure and mechanical properties of the Al-Mg based alloys. It is found that the micro-alloying can s... An extensive investigation was made on the effects of micro-alloying with small amounts of Sc and Mn on the microstructure and mechanical properties of the Al-Mg based alloys. It is found that the micro-alloying can significantly enhance the tensile strength of the alloys, and eliminate the dendritic cast structure in it. Many fine, spherical and dispersive Al3Sc particles are found in the annealed Al-Mg-Mn-Sc alloys, which can strongly pin up dislocations and subgrain boundaries, thus strongly retarding the recrystallization of the alloys. The strengthening of the micro-alloyed Al-Mg alloys is attributed to the precipitation strengthening by the Al3Sc particles and to the substructure strengthening. 展开更多
关键词 铝镁合金 粉末合金 微观结构 机械性能
下载PDF
Coupled mechanical and thermal simulation of warm compaction 被引量:2
17
作者 李元元 赵伟斌 +1 位作者 周照耀 陈普庆 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第2期311-315,共5页
Warm compaction process of pure iron powder was investigated. Due to the existence of elastic, plastic and thermal strains, a coupled mechanical and thermal model was applied. The elasto-plastic constitutive equations... Warm compaction process of pure iron powder was investigated. Due to the existence of elastic, plastic and thermal strains, a coupled mechanical and thermal model was applied. The elasto-plastic constitutive equations for powder material were developed based on ellipsoidal yield criterion and continuum theory. The constitutive equations were integrated into the constitutive integral arithmetic and solved employing incremental iterative solution strategy. The yield strength of iron powder was obtained according to the tensile experiments. When the compaction temperature was raised to 130 ℃, the yield strength of iron powder metal drops to 85% of room temperature value. Modified coulomb friction law is applied and the simulation results show that friction was an important factor resulting in the inhomogeneous relative density and reverse-density distribution phenomena in the regions near the die wall and the symmetrical axis. 展开更多
关键词 粉末金属 温压 相对密度 有限元 热模拟
下载PDF
Effect of Ce-rich misch metal addition on squeeze cast microstructure and mechanical properties of AZ81 alloy 被引量:2
18
作者 廖慧敏 龙思远 +1 位作者 郭存宝 朱志兵 《中国有色金属学会会刊:英文版》 CSCD 2008年第A01期44-49,共6页
The effect of cerium-rich misch metal addition on the microstructure and properties of squeeze cast magnesium alloys AZ81 was empirically investigated.The results indicate that the addition of cerium-rich misch metal ... The effect of cerium-rich misch metal addition on the microstructure and properties of squeeze cast magnesium alloys AZ81 was empirically investigated.The results indicate that the addition of cerium-rich misch metal modifies the microstructure gradually.With the increase of the RE addition,the amount of Mg_(17)Al_(12) decreases while that of Al_(11)(RE)_3 increases,accompanied by grain refinement.When the addition reaches 1.5%,the grain refinement becomes obvious.However,when the addition exceeds 2.0%, Al_(11)(RE)_3 phase coarsens into rod shape and the grain size increases.The tensile properties of the AZ81 at both room temperature and 150℃increase with the addition,and reach their optimal values with the addition of 1.5%.Further increase of the addition to above 2.0%decreases the tensile properties considerably.The tensile fracture of the alloy is characterized by the cleavage of the brittle second phases and ductile dimples of the matrix. 展开更多
关键词 AZ81合金 挤压 微观结构 金属合金
下载PDF
Analytical Modelling and Experiment of Novel Rotary Electro-Mechanical Converter with Negative Feedback Mechanism for 2D Valve 被引量:1
19
作者 Bin Meng Mingzhu Dai +3 位作者 Chenhang Zhu Chenchen Zhang Chuan Ding Jian Ruan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期162-182,共21页
The manufacturing of spiral groove structure of two-dimensional valve(2D valve)feedback mechanism has shortcomings of both high cost and time-consuming.This paper presents a novel configuration of rotary electro-mecha... The manufacturing of spiral groove structure of two-dimensional valve(2D valve)feedback mechanism has shortcomings of both high cost and time-consuming.This paper presents a novel configuration of rotary electro-mechanical converter with negative feedback mechanism(REMC-NFM)in order to replace the feedback mechanism of spiral groove and thus reduce cost of valve manufacturing.In order to rapidly and quantitative evaluate the driving and feedback performance of the REMC-NFM,an analytical model taking leakage flux,edge effect and permeability nonlinearity into account is formulated based on the equivalent magnetic circuit approach.Then the model is properly simplified in order to obtain the optimal pitch angle.FEM simulation is used to study the influence of crucial parameters on the performance of REMC-NFM.A prototype of REMC-NFM is designed and machined,and an exclusive experimental platform is built.The torque-angle characteristics,torque-displacement characteristics,and magnetic flux density in the working air gap with different excitation currents are measured.The experimental results are in good agreement with the analytical and FEM simulated results,which verifies the correctness of the analytical model.For torque-angle characteristics,the overall torque increases with both current and rotation angle,which reaches about 0.48 N·m with 1.5 A and 1.5°.While for torque-displacement characteristics,the overall torque increases with current yet decrease with armature displacement due to the negative feedback mechanism,which is about 0.16 N·m with 1.5 A and 0.8 mm.Besides,experimental results of conventional torque motor are compared with counterparts of REMC-NFM in order to validate the simplified model.The research indicates that the REMC-NFM can be potentially used as the electro-mechanical converter for 2D valves in civil servo areas. 展开更多
关键词 Electro-mechanical converter Magnetic circuit topology Analytical modeling 2D valve
下载PDF
MECHANICAL ANALYSIS OF CYLINDERS BEING UPSET BETWEEN SPHERICAL CONCAVE PLATEN AND CONCAVE SUPPORTING PLATE 被引量:1
20
作者 LIU Guohui XIAO Wenhui +1 位作者 NI Liyong LIU Zhubai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期99-102,共4页
Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diamete... Mechanical analysis of cylinders being upset between spherical concave platen and concave supporting plate is conducted. Rigid-plastic mechanical models for cylinders are presented. When the ratio of height to diameter, is larger than 1, there exists two-dimensional tensile stress in the deformed body, when the ratio is smaller than 1, there exists shear stress in static hydraulic zone. The former breaks through the theory that there is three-dimensional compressive stress irrespective of any ratio of height to diameter. The latter satisfactorily explains the mechanism of layer-like cracks in disk-shaped forgings and the flanges of forged gear axles. The representation of the two models makes the upsetting, theory into correct and perfect stage. 展开更多
关键词 Spherical concave platen Concave supporting plate UPSETTING Tensile stress Shear stress
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部