There is a more consanguineous relation be-tween nano-scale deformation of coal structure and meta-morphic-deformed environment. In different metamor-phic-deformed environments, deformation in the coal struc-ture can ...There is a more consanguineous relation be-tween nano-scale deformation of coal structure and meta-morphic-deformed environment. In different metamor-phic-deformed environments, deformation in the coal struc-ture can occur not only at micro-scale, but also at nano-scale, and even leads to the change of molecular structure and nano-scale pore (<100 nm) structure. The latter is the main space absorbing coalbed methane. Through X-ray diffraction (XRD) and liquid–nitrogen absorption methods, the charac-teristics of macromolecular and nano-scale pore structures of coals in different metamorphic-deformed environments and deformational series of coals have been studied. By combin-ing with high-resolution transmission electron microcopy (HRTEM), the macromolecular and nano-scale pore struc-tures are also directly observed. These results demonstrate that the stacking Lc of the macromolecular BSU in tectonic coals increases quickly from the metamorphic-deformed environment of low rank coals to that of high rank coals. For different deformed tectonic coals, in the same metamor-phic-deformed environment, the difference of Lc is obvious. These changes reflect chiefly the difference of different tem-perature and stress effect of nano-scale deformation in tec-tonic coals. The factor of temperature plays a greater role in the increase of macromolecular structure parameters Lc, the influence of stress factor is also important. With the stress strengthening, Lc shows an increasing trend, and La /Lc shows a decreasing trend. Therefore, Lc and La /Lc can be used as the indicator of nano-scale deformation degree of tectonic coals. With increasing temperature and pressure, especially oriented stress, the orientation of molecular structure be-comes stronger, and ordering degree of C-nets and the ar-rangement of BSU are obviously enhanced. For the deforma-tion of nano-scale pore structure, in the same metamor-phic-deformed environment, along with the strengthening of stress, the ratio of mesopores to its total pores volume of tec-tonic coals reduces to a large extent, the ratio of volume of micropores and the pores whose diameters are lower than micropores increases, and sub-micropores and ultra- micro-pores can be found. Moreover, the ratio of specific surface area of mesopores to its total pores reduces rapidly while theamount of sub-micropores increases more quickly. The duc-tile structure coal has a change in pore parameters similar to that of weak brittle deformation. There are differences in the deformation and evolution of nano-scale pore structure of different kinds of tectonic coals formed in different meta-morphic-deformational environments. In short, temperature and confining pressure play some role in the change of nano-scale pore structure parameters, whereas stress has important influence on the evolution of characteristic parameters in nano-scale pore structure of tectonic coals.展开更多
基金This work was supported by the National Key Development Plan Project of Basic Research(973 Plan)(Grant No.2002CB211704)the National N atural Science Foundation of China(Grant No.40172058)+1 种基金China Postdoctoral Science Foundation(Grant No.200403508)Kuancheng Wang Post-doctoral Research Award Fund of Chinese Academy of Sciences.
文摘There is a more consanguineous relation be-tween nano-scale deformation of coal structure and meta-morphic-deformed environment. In different metamor-phic-deformed environments, deformation in the coal struc-ture can occur not only at micro-scale, but also at nano-scale, and even leads to the change of molecular structure and nano-scale pore (<100 nm) structure. The latter is the main space absorbing coalbed methane. Through X-ray diffraction (XRD) and liquid–nitrogen absorption methods, the charac-teristics of macromolecular and nano-scale pore structures of coals in different metamorphic-deformed environments and deformational series of coals have been studied. By combin-ing with high-resolution transmission electron microcopy (HRTEM), the macromolecular and nano-scale pore struc-tures are also directly observed. These results demonstrate that the stacking Lc of the macromolecular BSU in tectonic coals increases quickly from the metamorphic-deformed environment of low rank coals to that of high rank coals. For different deformed tectonic coals, in the same metamor-phic-deformed environment, the difference of Lc is obvious. These changes reflect chiefly the difference of different tem-perature and stress effect of nano-scale deformation in tec-tonic coals. The factor of temperature plays a greater role in the increase of macromolecular structure parameters Lc, the influence of stress factor is also important. With the stress strengthening, Lc shows an increasing trend, and La /Lc shows a decreasing trend. Therefore, Lc and La /Lc can be used as the indicator of nano-scale deformation degree of tectonic coals. With increasing temperature and pressure, especially oriented stress, the orientation of molecular structure be-comes stronger, and ordering degree of C-nets and the ar-rangement of BSU are obviously enhanced. For the deforma-tion of nano-scale pore structure, in the same metamor-phic-deformed environment, along with the strengthening of stress, the ratio of mesopores to its total pores volume of tec-tonic coals reduces to a large extent, the ratio of volume of micropores and the pores whose diameters are lower than micropores increases, and sub-micropores and ultra- micro-pores can be found. Moreover, the ratio of specific surface area of mesopores to its total pores reduces rapidly while theamount of sub-micropores increases more quickly. The duc-tile structure coal has a change in pore parameters similar to that of weak brittle deformation. There are differences in the deformation and evolution of nano-scale pore structure of different kinds of tectonic coals formed in different meta-morphic-deformational environments. In short, temperature and confining pressure play some role in the change of nano-scale pore structure parameters, whereas stress has important influence on the evolution of characteristic parameters in nano-scale pore structure of tectonic coals.