期刊文献+
共找到328篇文章
< 1 2 17 >
每页显示 20 50 100
Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics
1
作者 Qiao Zhou Cenqi Yan +18 位作者 Hongxiang Li Zhendong Zhu Yujie Gao Jie Xiong Hua Tang Can Zhu Hailin Yu Sandra P.Gonzalez Lopez Jiayu Wang Meng Qin Jianshu Li Longbo Luo Xiangyang Liu Jiaqiang Qin Shirong Lu Lei Meng Frédéric Laquai Yongfang Li Pei Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期56-69,共14页
Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on ta... Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality. 展开更多
关键词 Inverted organic photovoltaics Thermal stability Aramid nanofibers Morphology control Charge carrier dynamics
下载PDF
Fabrication of segregated poly(arylene sulfide sulfone)/graphene nanoplate composites reinforced by polymer fibers for electromagnetic interference shielding 被引量:3
2
作者 Cheng-gong Chang Jia-cao Yang +3 位作者 Gang Zhang Sheng-ru Long Xiao-jun Wang Jie Yang 《Nano Materials Science》 EI CAS CSCD 2022年第3期285-293,共9页
Poly(arylene sulfide sulfone)/graphene nanoplate(PASS/GNP) composites with segregated structure based on continuous polymer fiber skeletons were fabricated by coating a thin conductive layer on the PASS fibers and the... Poly(arylene sulfide sulfone)/graphene nanoplate(PASS/GNP) composites with segregated structure based on continuous polymer fiber skeletons were fabricated by coating a thin conductive layer on the PASS fibers and then performing compression molding. The formation of a unique segregated conductive network endowed the PASS/GNP composites with high electrical conductivity and excellent electromagnetic interference(EMI) shielding effectiveness(SE), reaching 17.8 S/m and 30.1 d B, respectively, when the content of the GNPs in the conductive layer was 20 wt%. The PASS/GNP composites also exhibited outstanding mechanical properties, which was attributed to the continuous PASS fiber skeletons that could withstand large loads and the strong interfacial interaction between the conductive layers and the PASS fibers that could provide good stress transfer. This approach is suitable for most soluble polymers. 展开更多
关键词 Segregated structure EMI shielding Interfacial interaction Mechanical properties
下载PDF
“Toolbox”for the Processing of Functional Polymer Composites 被引量:1
3
作者 Yun Wei Hongju Zhou +5 位作者 Hua Deng Wenjing Ji Ke Tian Zhuyu Ma Kaiyi Zhang Qiang Fu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期216-256,共41页
Functional polymer composites(FPCs)have attracted increasing attention in recent decades due to their great potential in delivering a wide range of functionalities.These functionalities are largely determined by funct... Functional polymer composites(FPCs)have attracted increasing attention in recent decades due to their great potential in delivering a wide range of functionalities.These functionalities are largely determined by functional fillers and their network morphology in polymer matrix.In recent years,a large number of studies on morphology control and interfacial modification have been reported,where numerous preparation methods and exciting performance of FPCs have been reported.Despite the fact that these FPCs have many similarities because they are all consisting of functional inorganic fillers and polymer matrices,review on the overall progress of FPCs is still missing,and especially the overall processing strategy for these composites is urgently needed.Herein,a"Toolbox"for the processing of FPCs is proposed to summarize and analyze the overall processing strategies and corresponding morphology evolution for FPCs.From this perspective,the morphological control methods already utilized for various FPCs are systematically reviewed,so that guidelines or even predictions on the processing strategies of various FPCs as well as multi-functional polymer composites could be given.This review should be able to provide interesting insights for the field of FPCs and boost future intelligent design of various FPCs. 展开更多
关键词 TOOLBOX Functional polymer composites Processing strategy Morphology control
下载PDF
A Thermochromic, Viscoelastic Nacre-like Nanocomposite for the Smart Thermal Management of Planar Electronics 被引量:2
4
作者 Jiemin Wang Tairan Yang +6 位作者 Zequn Wang Xuhui Sun Meng An Dan Liu Changsheng Zhao Gang Zhang Weiwei Lei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期182-196,共15页
Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elastic... Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elasticity, arbitrary elongation along with soft devices, and smart properties involving thermal self-healing, thermochromism and so on. Nacre-like composites with excellent in-plane heat dissipation are ideal as heat spreaders for thin and planar electronics. However, the intrinsically poor viscoelasticity, i.e., adhesion and elasticity, prevents them from simultaneous self-adhesion and arbitrary elongation along with current flexible devices as well as incurring high interfacial thermal impedance. In this paper, we propose a soft thermochromic composite(STC) membrane with a layered structure, considerable stretchability, high in-plane thermal conductivity(~30 Wm^(-1) K^(-1)), low thermal contact resistance(~12 mm^2 KW^(-1), 4–5 times lower than that of silver paste), strong yet sustainable adhesion forces(~4607 Jm^(-2), 2220 Jm^(-2) greater than that of epoxy paste) and self-healing efficiency. As a self-adhesive heat spreader, it implements efficient cooling of various soft electronics with a temperature drop of 20℃ than the polyimide case. In addition to its self-healing function, the chameleon-like behavior of STC facilitates temperature monitoring by the naked eye, hence enabling smart thermal management. 展开更多
关键词 Boron nitride nanosheets Nacre-inspired composites VISCOELASTIC THERMOCHROMIC Smart thermal management
下载PDF
Inner-pore reduction nucleation of palladium nanoparticles in highly conductive wurster-type covalent organic frameworks for efficient oxygen reduction electrocatalysis 被引量:1
5
作者 Weiwen Wang Lu Zhang +4 位作者 Tianping Wang Zhen Zhang Xiangnan Wang Chong Cheng Xikui Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期543-552,I0014,共11页
Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their ... Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery. 展开更多
关键词 Covalent organic frameworks Wurster-type structure In-situ reduction nucleation Palladium nanoparticles Oxygen reduction electrocatalysis
下载PDF
A record-breaking high efficiency facilitated by hierarchical morphology in all polymer solar cells 被引量:2
6
作者 Yingyue Zhang Wentao Zou +3 位作者 Youdi Zhang Pei Cheng Long Ye Ke Gao 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期460-461,I0012,共3页
Organic solar cells(OSCs) especially non-fullerene OSCs(NF-OSCs) are promising to become the next-generation of commercial applications and have received great attention from many researchers due to their typical adva... Organic solar cells(OSCs) especially non-fullerene OSCs(NF-OSCs) are promising to become the next-generation of commercial applications and have received great attention from many researchers due to their typical advantages of low cost,light weight,and flexibility [1,2]. 展开更多
关键词 BREAKING polymer WEIGHT
下载PDF
The Research of Biomedical Intelligent Polymer Materials
7
作者 ZHANG Zhi-bin CHEN Yuan-wei +4 位作者 TANG Chang-wei QIU Kai LUO Juan XU Cheng-yin WAN Chang-xiu 《合成化学》 CAS CSCD 2004年第z1期108-108,共1页
关键词 INTELLIGENCE stimulation-response Polymer materials Biomedicine.
下载PDF
In situ polymerization preparation and mechanical properties of nanocomposites based on PA10T/10I-block-PEG copolymer and graphene oxide
8
作者 Xiao-bo Fu Xin Tong +4 位作者 Jia-cao Yang Gang Zhang Mei-lin Zhang Xiao-jun Wang Jie Yang 《Nano Materials Science》 EI CAS CSCD 2022年第3期276-284,共9页
Poly(decamethylene terephthalamide/decamethylene isophthalamide)-block-polyvinyl alcoho)(PA10 T/10 IPEG) copolymer/graphene oxide(GO) composites were prepared via in-situ melt polymerization and two different nano-fil... Poly(decamethylene terephthalamide/decamethylene isophthalamide)-block-polyvinyl alcoho)(PA10 T/10 IPEG) copolymer/graphene oxide(GO) composites were prepared via in-situ melt polymerization and two different nano-filler addition approaches were compared. The relationship between the micro-structure and performance of the elastomer composites prepared by one-step and two-step methods was explored. The results show that the two-step method significantly promoted the dispersion of the GO in a polymer matrix, and facilitated the grafting of more hard molecular chains. Thus, the elastic modulus and tensile strength of the nanocomposite have been significantly improved by the presence of GO. This was because of the strong interaction between the functional groups on the surface of the GO and the hard molecular chains. This would be also be favorable to load transfer across the interface. Additionally, the elongation at the break of composites increased by 10% with the addition of a small amount of GO(0.2% wt). This is because hard domains tend to be enriched on the surface of GO in composites and act as a lubricating layer at the interface between the GO and matrix, leading to increased deformation ability. This work provides an effective strategy to prepare elastomer composites with high strength and toughness. 展开更多
关键词 Graphene oxide Thermoplastic elastomer In-situ polymerization COMPOSITE
下载PDF
The Research on Intelligent Controlled DDS of Polymer Carrier
9
作者 ZHANG Zhi-bin LUO Juan +3 位作者 XU Cheng-yin CHEN Yuan-wei TANG Chang-wei WAN Chang-xiu 《合成化学》 CAS CSCD 2004年第z1期110-110,共1页
关键词 Intelligent polymer carrier DDS Intelligentlly controlled release.
下载PDF
Piezoresistive behavior of elastomer composites with segregated network of carbon nanostructures and alumina
10
作者 Chun-Yan Tang Lei Liu +3 位作者 Kai Ke Bo Yin Ming-Bo Yang Wei Yang 《Nano Materials Science》 EI CAS CSCD 2023年第3期312-318,共7页
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi... Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity. 展开更多
关键词 Thermoplastic polyurethane Carbon nanostructures ALUMINA Conductive elastomer composites Stretchable strain sensor
下载PDF
Dependence of lithium metal battery performances on inherent separator porous structure regulation
11
作者 Lei Ding Dandan Li +7 位作者 Lingyang Liu Pengfang Zhang Fanghui Du Chao Wang Daoxin Zhang Shuo Zhang Sihang Zhang Feng Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期436-447,共12页
Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration ... Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration and worsen Li plating-stripping behaviors when smoothly shifting from lithium-ion batteries(LIBs) to LMBs.This study precisely regulations the crystal structure of β-polypropylene and separator porous construction to investigate the intrinsic porous structure and mechanical properties determined electrochemical performances and cycling durability of LMBs.Crystal structure characterizations,porous structure analyses,and electrochemical cycling tests uncover appropriate annealing thermal stimulation concentrates β-lamellae thickness and enhances lamellae thermal stability by rearranging molecular chain in inferior β-lamellae,maximally homogenizing biaxial tensile deformation and resultant porous constructions.These even pores with high connectivity lower ion migration barriers,alleviate heterogeneous Li^(+) flux dispersion,stabilize reversible Li plating-stripping behaviors,and hinder coursing and branching of Li dendrites,endowing steady cell cycling durability,especially at higher currents due to the highlighted uncontrollable cumulation of dead Li,which offers new insights for the current pursuit of high-power density battery and fast charging technology.The suggested separator structure-chemical nature functions in ensuring cyclic cell stability and builds reliable relationships between separator structure design and practical LMBs applications. 展开更多
关键词 Lithium metal battery Polyolefin separator Porous structure design Lithium dendrite regulation Cycling stability
下载PDF
Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano‑Aerogel via Abundant Nano‑Sized Cavities and Attenuation Interfaces 被引量:1
12
作者 Haoyu Ma Maryam Fashandi +5 位作者 Zeineb Ben Rejeb Xin Ming Yingjun Liu Pengjian Gong Guangxian Li Chul B.Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期370-383,共14页
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT... Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work. 展开更多
关键词 Nano-pore size Heterogeneous interface Electromagnetic wave absorption Thermal infrared stealth Nano-aerogel
下载PDF
Exploring Trade-offs in Thermal Interface Materials:The Impact of Polymer-Filler Interfaces on Thermal Conductivity and Thixotropy
13
作者 Bin Zhang Zheng-Li Dou +2 位作者 Yong-Zheng Zhang Qiang Fu Kai Wu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第7期916-925,I0006,共11页
Effective thermal transport across solid-solid interfaces which is essential in thermal interface materials(TIMs),necessitates both optimal thixotropy and high thermal conductivity.The role of filler surface modificat... Effective thermal transport across solid-solid interfaces which is essential in thermal interface materials(TIMs),necessitates both optimal thixotropy and high thermal conductivity.The role of filler surface modification,a fundamental aspect of TIM fabrication,in the influence of these properties is not fully understood.This study employs the use of a silane coupling agent(SCA)to modify alumina,integrating experimental approaches with molecular dynamics simulations,to elucidate the interface effects on thixotropy and thermal conductivity in polydimethylsiloxane(PDMS)-based TIMs.Our findings reveal that the variations of SCAs modify both interface binding energy and transition layer thickness.The interface binding energy restricts macromolecular segmental relaxation near the interface,hindering desirable thixotropy and bond line thickness.On the contrary,the thickness of the transition layer at the interface positively influences thermal conductivity,facilitating the transport of phonons between the polymer and filler.Consequently,selecting an optimal SCA allows a balance between traditionally conflicting goals of high thermal conductivity and minimal bond line thickness,achieving an impressively low interface thermal resistance of just 2.45-4.29 K·mm^(2)·W^(-1)at275.8 kPa. 展开更多
关键词 Thermal interface material Surface modification Thermal conductivity THIXOTROPY Interface thermal resistance
原文传递
Arbitrary skin metallization by pencil-writing inspired solid-ink rubbing for advanced energy storage and harvesting
14
作者 Yonghan Zhou Zhongfeng Ji +5 位作者 Wenrui Cai Xuewei He Ruiying Bao Xuewei Fu Wei Yang Yu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期592-602,I0013,共12页
The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and... The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond. 展开更多
关键词 Microadhesion guided technology Skin metallization by solid-ink rubbing Liquid metal composites Composite current collector Batteries and triboelectric nanogenerators
下载PDF
Enhanced Ion-Selective Diffusion Achieved by Supramolecular Interaction for High Thermovoltage and Thermal Stability
15
作者 Jiale Ke Xing Zhao +4 位作者 Jie Yang Kai Ke Yu Wang Mingbo Yang Wei Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期200-208,共9页
Thermoelectric(TE)generators capable of converting thermal energy into applicable electricity have gained great popularity among emerging energy conversion technologies.Biopolymer-based ionic thermoelectric(i-TE)mater... Thermoelectric(TE)generators capable of converting thermal energy into applicable electricity have gained great popularity among emerging energy conversion technologies.Biopolymer-based ionic thermoelectric(i-TE)materials are promising candidates for energy conversion systems because of their wide sources,innocuity,and low manufacturing cost.However,common physically crosslinked biopolymer gels induced by single hydrogen bonding or hydrophobic interaction suffer from low differential thermal voltage and poor thermodynamic stability.Here,we develop a novel i-TE gel with supramolecular structures through multiple noncovalent interactions between ionic liquids(ILs)and gelatin molecular chains.The thermopower and thermoelectric power factor of the ionic gels are as high as 2.83 mV K-1 and 18.33μW m^(-1)K^(-2),respectively.The quasi-solid-state gelatin-[EMIM]DCA i-TE cells achieve ultrahigh 2 h output energy density(E_(2h)=9.9 mJ m^(-2))under an optimal temperature range.Meanwhile,the remarkable stability of the supramolecular structure provides the i-TE hydrogels with a thermal stability of up to 80℃.It breaks the limitation that biopolymer-based i-TE gels can only be applied in the low temperature range and enables biopolymer-based i-TE materials to pursue better performance in a higher temperature range. 展开更多
关键词 biopolymer gel ionic liquid multiple noncovalent interactions supramolecular structure thermoelectric conversion
下载PDF
An Effective Approach for the Preparation of High Performance Thermal Conductive Polymer Composites Containing Liquid Metal
16
作者 Xin Chen Xue-Zhong Zhang +4 位作者 Yi-Fei Yuan Chuan-Liang Chen Lian-Hu Xiong Qiang Fu Hua Deng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第7期992-1001,I0010,共11页
The preparation of high-performance thermal conductive composites containing liquid metals(LM)has attracted significant attention.However,the stable dispersion of LM within polymer solution and effective property cont... The preparation of high-performance thermal conductive composites containing liquid metals(LM)has attracted significant attention.However,the stable dispersion of LM within polymer solution and effective property contribution of liquid metals remains significant challenges that need to be overcome.Inspired by the properties of the dendritic structure of the tree root system in grasping the soil,“shear-induced precipitation-interfacial reset-reprotonation”processing strategy is proposed to prepare nanocomposites based on aramid micron fibers(AMFs)with hierarchical dendritic structure.Thanks to the combination of van der Waals force provided by hierarchical dendritic structure,electrostatic interaction between AMFs and LM,coordinative bonding of―NH to LM,together with interfacial re-setting and multi-step protonation,several features can be achieved through such strategy:conducive to the local filler network construction,improvement of interfacial interaction,improvement of the stability of filler dispersion in the solvent,and enhancement of mechanical and thermal properties of the films.The resulting AMFsp H=4/LM films demonstrate a thermal conductivity of 10.98 W·m^(-1)·K^(-1)at 70%filler content,improvement of 126.8%compared to ANFs/LM film;while maintaining a strength of~85.88 MPa,improvement of 77%compared to AMFs/LM film.They also possess insulation properties,enable heat dissipation for high power electronics.This work provides an effective strategy for the preparation of high performance polymer composites containing liquid metal. 展开更多
关键词 Shear-induced Reprotonation AMFs LM Filler dispersion
原文传递
Structural disruption of melanin-like polymers with boosted UV protection
17
作者 Zhen Yang Xianheng Wang +3 位作者 Wanjie Bai Zikun Zou Haoxing Wu Yiwen Li 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1653-1663,共11页
Manipulating the energy structure of materials represents an efficient way to regulate their light absorption behaviors. For example, constructing donor-acceptor(D-A) structures to increase the polarizability and redu... Manipulating the energy structure of materials represents an efficient way to regulate their light absorption behaviors. For example, constructing donor-acceptor(D-A) structures to increase the polarizability and reduce the energy bandgap of local molecules has been widely used in the field of organic photovoltaics with ordered structures. Remarkably, even in disordered and chaotic systems such as melanin-like polydopamine(PDA), visible and near-infrared light absorption can be significantly improved using this strategy. However, there has been a noticeable dearth of research on the ultraviolet(UV) light absorption regulation of bioinspired polymers with disordered and chaotic architectures by tailoring the D-A microstructures. In this study, a series of benzoheterocyclic molecules with strong electron-donating features screened by molecular simulation calculations were involved in disrupting the D-A structures within PDA. The destruction of D-A structures promoted the increase of the energy band gap and finally boosted the UV absorption of PDA. The resulting PDA nanoparticles with enhanced UV absorption were further employed to fabricate UV shielding composite films to protect the growth of plants from harmful UV radiation. This research may open up new avenues for structural disruption of bioinspired polymers for enhanced photoprotection applications. 展开更多
关键词 melanin-like polymers POLYDOPAMINE D-A structure UV absorption PHOTOPROTECTION
原文传递
Highly active organocatalyst from a trivalent phosphazenium salt for ring-opening copolymerization of epoxides and cyclic anhydrides enhanced by hydrogen bonding interactions
18
作者 Chunhuan Jiang Junqi Wang +4 位作者 Xiaoyu Liu Xiaoxia You Ronglin Zhong Chuanli Ren Zhibo Li 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第9期3111-3120,共10页
It is highly desirable to develop simple organocatalysts for the controlled ring-opening alternating copolymerization(ROAC)of epoxides and cyclic anhydrides,leading to high molecular weight polyesters.Hence,a phosphaz... It is highly desirable to develop simple organocatalysts for the controlled ring-opening alternating copolymerization(ROAC)of epoxides and cyclic anhydrides,leading to high molecular weight polyesters.Hence,a phosphazenium salt,namely tri[tris(dimethylamino)phosphoranylidenamino]phosphonium chloride(P_(4)^(+)Cl^(-)),is developed as a catalyst for the ROAC of epoxides and cyclic anhydrides.Surprisingly,the combination of P_(4)^(+)Cl^(-)with a protonic initiator,such as 1,4-benzenedimethanol(BDM)exhibited high efficiency in the copolymerization of propylene oxide(PO)and phthalic anhydride(PA).This led to the production of polyester with an exceptional high molecular weight(M_n)of up to 126 k Da,which represented a rare example of poly(PO-alt-PA)with Mnsurpassing 100 k Da.Note that the core P atom is trivalent status and the tris[tris(dimethylamino)]phosphoranyl group will share one proton in the P_(4)^(+)Cl^(-)salt.Once combined with protonic species,the P_(4)^(+)Cl^(-)will not only serve as a proton acceptor but also as a hydrogen bonding donor for the cyclic anhydrides.Therefore,it was assumed that the P_(4)^(+)plus proton served dual role in mimic of base/urea pair to effectively catalyze ROAC,which was supported by density functional theory(DFT)calculations. 展开更多
关键词 ring-opening copolymerization ORGANOCATALYST EPOXIDES cyclic anhydrides phosphazenium salt
原文传递
Controlled Synthesis of Proton-Conductive Porous Organic Polymer Gels via Electrostatically Stabilized Colloidal Formation
19
作者 Bin Chen Yifeng Kuang +5 位作者 Lu Liu Linkun Cai Zaoming Wang Panchao Yin Liangbin Huang Cheng Gu 《CCS Chemistry》 CSCD 2024年第7期1767-1775,共9页
Porous organic polymers(POPs)have attracted extensive interest due to their structural diversity and predesigned functionality.However,the majority of POPs are synthesized as insoluble and unprocessable powders,which ... Porous organic polymers(POPs)have attracted extensive interest due to their structural diversity and predesigned functionality.However,the majority of POPs are synthesized as insoluble and unprocessable powders,which greatly impede their advanced applications because of limited mass transport and inadaptation for device integration.Herein,we report a controlled synthetic strategy of macroscopic POP gels by a cation-stabilized colloidal formation mechanism,which is widely adaptable to a large variety of tetra-/tri-amino build blocks for the synthesis of Tröger’s base-linked POP gels,aerogels,and ionic gels.The POP gels combined the integrated advantages of hierarchically porous structures and tailorable mechanical stiffness,whereas they could load substantial amounts of phosphoric acids and construct unimpeded transport pathways for proton conduction,exhibiting unprecedented proton conductivity at subzero temperatures.Our strategy offers a new solution to the intractable processing issues of POPs toward device applications with cutting-edge performances. 展开更多
关键词 porous organic polymers Tröger’s base linkage GELS superprotonic conduction subzero temperatures
原文传递
π-Extended giant dimeric acceptor as a third component enables highly efficient ternary organic solar cells with efficiency over 19.2%
20
作者 Mengran Peng Haotian Wu +7 位作者 Liming Wu Jianhua Chen Ruijie Ma Qunping Fan Hua Tan Weiguo Zhu Hongxiang Li Junqiao Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期263-270,I0006,共9页
Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acce... Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acceptors have emerged as promising materials for achieving highly efficient and stable binary OSCs,while application as third component for ternary OSCs is limited.Here a novelπ-extended giant dimeric acceptor,GDF,is developed based on central Y series core fusion and rigid BDT as linker,and then incorporated into the state-of-the-art PM1:PC6 system to construct ternary OSCs.The GDF has a near planar backbone,resulting in increasedπ-conjugation,excellent crystallinity,and good electron transport capacity.When GDF is introduced into the PM1:PC6 system,it ensues in a cascade like the lowest unoccupied molecular orbitals(LUMO)energy level alignment,a complementary absorption band with PM1 and PC6,higher and balanced hole and electron mobility,slightly smaller domain size,and a higher exciton dissociation probability for PM1:PC6:GDF(1:1.1:0.1)blend film.As a consequence,the PM1:PC6:GDF(1:1.1:0.1)ternary OSC achieves a champion PCE of 19.22%,with a significantly higher open-circuit voltage and short-circuit current density,compared to 18.45%for the PM1:PC6(1:1.2)binary OSC.Our findings show that employing aπ-extended giant dimeric acceptor as a third component significantly improves the photovoltaic performance of ternary OSCs. 展开更多
关键词 Giant dimeric acceptor Third component Ternary organic solar cells
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部