In high harmonic generation(HHG),Laguerre–Gaussian(LG) beams are used to generate extreme ultraviolet(XUV)vortices with well-defined orbital angular momentum(OAM),which have potential applications in fields such as m...In high harmonic generation(HHG),Laguerre–Gaussian(LG) beams are used to generate extreme ultraviolet(XUV)vortices with well-defined orbital angular momentum(OAM),which have potential applications in fields such as microscopy and spectroscopy.An experimental study on the HHG driven by vortex and Gaussian beams is conducted in this work.It is found that the intensity of vortex harmonics is positively correlated with the laser energy and gas pressure.The structure and intensity distribution of the vortex harmonics exhibit significant dependence on the relative position between the gas jet and the laser focus.The ring-like structures observed in the vortex harmonics,and the interference of quantum paths provide an explanation for the distinct structural characteristics.Moreover,by adjusting the relative position between the jet and laser focus,it is possible to discern the contributions from different quantum paths.The optimization of the HH vortex field is applicable to the XUV,which opens up a new way for exploiting the potential in optical spin or manipulating electrons by using the photon with tunable orbital angular momentum.展开更多
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(...High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.展开更多
The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the ...The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the corresponding isomerization products are 1-buten-2-ol, 2-buten-2-ol, butanal or 1-buten-l-ol, methyl 1-propenyl ether, methyl allyl ether, and ethyl vinyl ether, respectively. Among them, there are three pathways through butylene oxide, indicating butylene oxide is an important intermediate product during butanone isomer ization. The calculated vertical ionization energies of the reactant and its products are in a good agreement with the experimental values available. From the consideration for the relative energies Of transition states and the number of high-energy barriers we infer that the reaction pathway butanone-*l-buten-2-ol---2-buten-2-oi is the most competitive. The obtained results are informative for future studies on isomerization of ketone molecules.展开更多
The accurate equilibrium structures of S_3 and S_3^- are determined by the coupled-cluster method with single, double excitation and perturbative triple excitation(CCSD(T)) with basis sets of aug-cc-pV(n+d)Z(n = T, Q,...The accurate equilibrium structures of S_3 and S_3^- are determined by the coupled-cluster method with single, double excitation and perturbative triple excitation(CCSD(T)) with basis sets of aug-cc-pV(n+d)Z(n = T, Q, 5, or 6), complete basis set extrapolation functions with two-parameters and three-parameters, together with considering the contributions due to the core-valence electron correlation, scalar relativistic effects, spin–orbit coupling, and zero-point vibrational corrections. Our calculations show that both the neutral S_3 and anion S_3^- have open forms with C_(2r) vsymmetry. On the basis of the stable geometries, the adiabatic electron affinity of S_3 is determined to be 19041(11) cm^(-1), which is in excellent agreement with the experimental data(19059(7) cm^(-1)). The dependence of geometries and electron affinity on the computation level and physical corrections is discussed. The present computational results are helpful to the experimental molecular spectroscopy and bonding of S_3.展开更多
We experimentally investigated the high-order harmonic generation(HHG)from aligned O_(2) and N_(2) molecules in a linearly polarized laser field,and presented the dependence of the harmonic spectrum on the driving las...We experimentally investigated the high-order harmonic generation(HHG)from aligned O_(2) and N_(2) molecules in a linearly polarized laser field,and presented the dependence of the harmonic spectrum on the driving laser intensity and molecular alignment angle.The minimum position of HHG of O_(2) varies with changing the laser intensity,which is caused by multi-orbital interference.However,the location of the observed minimum structure in N_(2) harmonic spectrum remained unchanged upon changing the laser intensity.The mechanism of the spectral minimum for N_(2) case is regarded as a Cooperlike minimum in HHG associated with the molecular electronic structure.This work indicates that harmonic spectroscopy can effectively uncover information about molecular structure and electron dynamics.展开更多
The tunneling ionization rates of vibrationally excited N2 molecules at the ground electronic state are calculated using molecular orbital Ammosov–Delone–Krainov theory considering R-dependence. The results show tha...The tunneling ionization rates of vibrationally excited N2 molecules at the ground electronic state are calculated using molecular orbital Ammosov–Delone–Krainov theory considering R-dependence. The results show that molecular alignment significantly affects the ionization rate, as the rate is mainly determined by the electron density distribution of the highest occupied molecular orbital. The present work indicates that the ratios of alignment-dependent rates of different vibrational levels to that of the vibrational ground level increase for the aligned N2 at the angle θ = 0?, and suggests that the alignment-dependent tunneling ionization rates can be used as a diagnostics for the influence of vibrational excitation on the strong field ionization of molecules.展开更多
High-quality bulk boron carbide(B4C) is successfully prepared at high pressure and high temperature(HPHT) by using B4C powder as a precursor. The as-synthesized B4C possesses a nanosheet structure with a thickness val...High-quality bulk boron carbide(B4C) is successfully prepared at high pressure and high temperature(HPHT) by using B4C powder as a precursor. The as-synthesized B4C possesses a nanosheet structure with a thickness value of 15 nm and a length of several dozen micrometers. Its Vickers hardness value and fracture toughness value are 42.4 GPa and4.51 MPa·m1/2, respectively, which are superior to those of B4 C obtained from spark plasma sintering due to its high densification and nanosheet structure. Additionally, it shows good property of oxidation resistance. In air, its oxidation resistance temperature is 1100?C which is higher than that of diamond under the same test condition.展开更多
Using Damour-Ruffini method,we investigate Hawking radiation from NUT-Taub-like(NT-like) black hole.Considering the total energy conservation and the back reaction of the particle to the spacetime,we get the radiation...Using Damour-Ruffini method,we investigate Hawking radiation from NUT-Taub-like(NT-like) black hole.Considering the total energy conservation and the back reaction of the particle to the spacetime,we get the radiation spectrum on the black hole event horizon,which is related to the change of Bekenstein-Hawking entropy.Meanwhile,we find that the radiation is not exactly thermal,and can take out information from the black hole,which can be used to explain the information loss paradox.The result that we get satisfies the unitary theory of quantum mechanics and is consistent with the work finished before.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974137,92250306,and 12304302)the National Key Program for Science and Technology Research and Development(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of Jilin Provincial Education Department,China(Grant No.JJKH20230283KJ)。
文摘In high harmonic generation(HHG),Laguerre–Gaussian(LG) beams are used to generate extreme ultraviolet(XUV)vortices with well-defined orbital angular momentum(OAM),which have potential applications in fields such as microscopy and spectroscopy.An experimental study on the HHG driven by vortex and Gaussian beams is conducted in this work.It is found that the intensity of vortex harmonics is positively correlated with the laser energy and gas pressure.The structure and intensity distribution of the vortex harmonics exhibit significant dependence on the relative position between the gas jet and the laser focus.The ring-like structures observed in the vortex harmonics,and the interference of quantum paths provide an explanation for the distinct structural characteristics.Moreover,by adjusting the relative position between the jet and laser focus,it is possible to discern the contributions from different quantum paths.The optimization of the HH vortex field is applicable to the XUV,which opens up a new way for exploiting the potential in optical spin or manipulating electrons by using the photon with tunable orbital angular momentum.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92250306,11974137,and 12304302)the National Key Program for Science and Technology Research and Development of China(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of the Education Department of Jilin Province,China(Grant No.JJKH20230283KJ)。
文摘High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.
文摘The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the corresponding isomerization products are 1-buten-2-ol, 2-buten-2-ol, butanal or 1-buten-l-ol, methyl 1-propenyl ether, methyl allyl ether, and ethyl vinyl ether, respectively. Among them, there are three pathways through butylene oxide, indicating butylene oxide is an important intermediate product during butanone isomer ization. The calculated vertical ionization energies of the reactant and its products are in a good agreement with the experimental values available. From the consideration for the relative energies Of transition states and the number of high-energy barriers we infer that the reaction pathway butanone-*l-buten-2-ol---2-buten-2-oi is the most competitive. The obtained results are informative for future studies on isomerization of ketone molecules.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874179,11447194,11574114,and 11874177)the Natural Science Foundation of Jilin Province,China(Grant No.20180101289JC)
文摘The accurate equilibrium structures of S_3 and S_3^- are determined by the coupled-cluster method with single, double excitation and perturbative triple excitation(CCSD(T)) with basis sets of aug-cc-pV(n+d)Z(n = T, Q, 5, or 6), complete basis set extrapolation functions with two-parameters and three-parameters, together with considering the contributions due to the core-valence electron correlation, scalar relativistic effects, spin–orbit coupling, and zero-point vibrational corrections. Our calculations show that both the neutral S_3 and anion S_3^- have open forms with C_(2r) vsymmetry. On the basis of the stable geometries, the adiabatic electron affinity of S_3 is determined to be 19041(11) cm^(-1), which is in excellent agreement with the experimental data(19059(7) cm^(-1)). The dependence of geometries and electron affinity on the computation level and physical corrections is discussed. The present computational results are helpful to the experimental molecular spectroscopy and bonding of S_3.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.91750104 and 11974137)the Natural Science Foundation of Jilin Province,China(Grant No.YDZJ202101ZYTS157).
文摘We experimentally investigated the high-order harmonic generation(HHG)from aligned O_(2) and N_(2) molecules in a linearly polarized laser field,and presented the dependence of the harmonic spectrum on the driving laser intensity and molecular alignment angle.The minimum position of HHG of O_(2) varies with changing the laser intensity,which is caused by multi-orbital interference.However,the location of the observed minimum structure in N_(2) harmonic spectrum remained unchanged upon changing the laser intensity.The mechanism of the spectral minimum for N_(2) case is regarded as a Cooperlike minimum in HHG associated with the molecular electronic structure.This work indicates that harmonic spectroscopy can effectively uncover information about molecular structure and electron dynamics.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant Nos.11034003 and 11127403)
文摘The tunneling ionization rates of vibrationally excited N2 molecules at the ground electronic state are calculated using molecular orbital Ammosov–Delone–Krainov theory considering R-dependence. The results show that molecular alignment significantly affects the ionization rate, as the rate is mainly determined by the electron density distribution of the highest occupied molecular orbital. The present work indicates that the ratios of alignment-dependent rates of different vibrational levels to that of the vibrational ground level increase for the aligned N2 at the angle θ = 0?, and suggests that the alignment-dependent tunneling ionization rates can be used as a diagnostics for the influence of vibrational excitation on the strong field ionization of molecules.
基金Project supported by the Scientific Research Fund of Jilin Provincial Education Department,China(Grant No.JJKH20190826KJ)
文摘High-quality bulk boron carbide(B4C) is successfully prepared at high pressure and high temperature(HPHT) by using B4C powder as a precursor. The as-synthesized B4C possesses a nanosheet structure with a thickness value of 15 nm and a length of several dozen micrometers. Its Vickers hardness value and fracture toughness value are 42.4 GPa and4.51 MPa·m1/2, respectively, which are superior to those of B4 C obtained from spark plasma sintering due to its high densification and nanosheet structure. Additionally, it shows good property of oxidation resistance. In air, its oxidation resistance temperature is 1100?C which is higher than that of diamond under the same test condition.
文摘Using Damour-Ruffini method,we investigate Hawking radiation from NUT-Taub-like(NT-like) black hole.Considering the total energy conservation and the back reaction of the particle to the spacetime,we get the radiation spectrum on the black hole event horizon,which is related to the change of Bekenstein-Hawking entropy.Meanwhile,we find that the radiation is not exactly thermal,and can take out information from the black hole,which can be used to explain the information loss paradox.The result that we get satisfies the unitary theory of quantum mechanics and is consistent with the work finished before.