Highly dispersive nanospheres of MnFe204 are prepared by template free hydrothermal method. The nanospheres have 47.3-nm average diameter, narrow size distribution, and good crystallinity with average crystallite size...Highly dispersive nanospheres of MnFe204 are prepared by template free hydrothermal method. The nanospheres have 47.3-nm average diameter, narrow size distribution, and good crystallinity with average crystallite size about 22 nm. The reaction temperature strongly affects the morphology, and high temperature is found to be responsible for growth of uniform nanospheres. Raman spectroscopy reveals high purity of prepared nanospheres. High saturation magnetization (78.3 emu/g), low coercivity (45 Oe, 10e = 79.5775 A.cm-1), low remanence (5.32 emu/g), and high anisotropy constant 2.84 × 10^4 J/m3 (10 times larger than bulk) are observed at room temperatures. The nearly snperparamagnetic behavior is ~ spin due to comparable size of nanospheres with superparamagnetic critical thameter Dcr spm The high value of Keff may be due to coupling between the pinned moment in the amorphous shell and the magnetic moment in the core of the nanospheres. The nanospheres show prominent optical absorption in the visible region, and the indirect band gap is estimated to be 0.98 eV from the transmission spectrum. The prepared Mn ferrite has potential applications in biomedicine and photocatalysis.展开更多
The ferromagnetic semiconductor La2NiMnO6 (LNMO) has recently received much attention due to its high Curie temperature (Tc 280 K), which is close to room temperature. We prepared single-phase LNMO polycrystaUine...The ferromagnetic semiconductor La2NiMnO6 (LNMO) has recently received much attention due to its high Curie temperature (Tc 280 K), which is close to room temperature. We prepared single-phase LNMO polycrystaUine samples and investigated the temperature- and field-dependent magnetic behaviors of bulk LNMO. Between Tc and T* = 300 K, we observed upward and downward deviations from the Curie-Weiss law for high and low magnetic fields, respectively. From the electron spin resonance results, we can exclude the existence of the Griffiths phase. On the contrary, our results indicate that the abnormal magnetic behaviors might be induced by antisite phase boundaries with antiferromagnetic interaction.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.50472092,50672008,and 50971023)the Beijing Natural Science Foundation (Preparation and Magnetic Properties of Ferromagnetic Nanoring Lattice)Research Foundation for Talented Scholars of China Three Gorges University.M.Y.Rafique was also supported by the Chancellor Scholarship of the University of Science and Technology of Beijing
文摘Highly dispersive nanospheres of MnFe204 are prepared by template free hydrothermal method. The nanospheres have 47.3-nm average diameter, narrow size distribution, and good crystallinity with average crystallite size about 22 nm. The reaction temperature strongly affects the morphology, and high temperature is found to be responsible for growth of uniform nanospheres. Raman spectroscopy reveals high purity of prepared nanospheres. High saturation magnetization (78.3 emu/g), low coercivity (45 Oe, 10e = 79.5775 A.cm-1), low remanence (5.32 emu/g), and high anisotropy constant 2.84 × 10^4 J/m3 (10 times larger than bulk) are observed at room temperatures. The nearly snperparamagnetic behavior is ~ spin due to comparable size of nanospheres with superparamagnetic critical thameter Dcr spm The high value of Keff may be due to coupling between the pinned moment in the amorphous shell and the magnetic moment in the core of the nanospheres. The nanospheres show prominent optical absorption in the visible region, and the indirect band gap is estimated to be 0.98 eV from the transmission spectrum. The prepared Mn ferrite has potential applications in biomedicine and photocatalysis.
基金supported by the National Key Basic Research Program of China(Grant No.2011CB921801)the National Natural Science Foundation of China(Grant Nos.11074293 and 51021061)
文摘The ferromagnetic semiconductor La2NiMnO6 (LNMO) has recently received much attention due to its high Curie temperature (Tc 280 K), which is close to room temperature. We prepared single-phase LNMO polycrystaUine samples and investigated the temperature- and field-dependent magnetic behaviors of bulk LNMO. Between Tc and T* = 300 K, we observed upward and downward deviations from the Curie-Weiss law for high and low magnetic fields, respectively. From the electron spin resonance results, we can exclude the existence of the Griffiths phase. On the contrary, our results indicate that the abnormal magnetic behaviors might be induced by antisite phase boundaries with antiferromagnetic interaction.