●We studied the effect of nitrogen and biochar on CO_(2) emission from SOC and SIC.●Nitrogen increased SIC-derived CO_(2) by 41%but decreased SOC-derived CO_(2) by 20%.●Biochar reduced total soil-derived CO_(2) by ...●We studied the effect of nitrogen and biochar on CO_(2) emission from SOC and SIC.●Nitrogen increased SIC-derived CO_(2) by 41%but decreased SOC-derived CO_(2) by 20%.●Biochar reduced total soil-derived CO_(2) by neutralizing nitrogen-induced acidity.●We proposed a method for 3-or 4-source partitioning CO_(2) emission from calcareous soils.Biochar addition generally increases the alkalinity regeneration to resist soil acidification driven by nitrogen(N)fertilization.Calcareous soils contain soil organic carbon(SOC)and inorganic C(SIC).Owing to technical limitations in three-source partitioning CO_(2),how biochar addition affects SOC-and SIC-derived CO_(2) emission has not been clarified yet.Therefore,we conducted a 70-day incubation experiment of ammonium-N and maize-straw-derived biochar additions to investigate the N plus biochar impacts on SOC-and SIC-derived CO_(2) emission.Over the 70-day incubation,we found that the N-only addition increased the SIC-derived CO_(2) emission by approximately 41%compared with the control,but decreased the SOC-derived CO_(2) emission by approximately 20%.This suggests that the distinct responses of SIC-and SOC-derived CO_(2) emission to N-only addition come from N-induced acidification and preferential substrate(N)utilization of soil microorganisms,respectively.Compared with N-only addition,N plus biochar addition decreased the SIC-derived CO_(2) emission by 17%−20%during the first 20 days of incubation,but increased it by 54%during the next 50 days.This result suggested that biochar addition reduced the SIC-derived CO_(2) emission likely due to the alkalization capacity of biochar exceeding the acidification capacity of ammonium-N in the short term,but it may increase the SIC-derived CO_(2) emission induced by the weak acidity produced from biochar mineralization in the long term.This study is helpful to improve the quantification of CO_(2) emission from calcareous soils.展开更多
Although it is well established that nitrogen(N)deficiency induces leaf senescence,the molecular mechanism of N deficiency-induced leaf senescence remains largely unknown.Here,we show that an abscisic acid(ABA)-respon...Although it is well established that nitrogen(N)deficiency induces leaf senescence,the molecular mechanism of N deficiency-induced leaf senescence remains largely unknown.Here,we show that an abscisic acid(ABA)-responsive NAC transcription factor(TF)is involved in N deficiency-induced leaf senescence.The overexpression of MdNAC4 led to increased ABA levels in apple calli by directly activating the transcription of the ABA biosynthesis gene MdNCED2.In addition,MdNAC4 overexpression promoted N deficiency-induced leaf senescence.Further investigation showed that MdNAC4 directly bound the promoter of the senescence-associated gene(SAG)MdSAG39 and upregulated its expression.Interestingly,the function of MdNAC4 in promoting N deficiency-induced leaf senescence was enhanced in the presence of ABA.Furthermore,we identified an interaction between the ABA receptor protein MdPYL4 and the MdNAC4 protein.Moreover,MdPYL4 showed a function similar to that of MdNAC4 in ABA-mediated N deficiencyinduced leaf senescence.These findings suggest that ABA plays a central role in N deficiency-induced leaf senescence and that MdPYL4 interacts with MdNAC4 to enhance the response of the latter to N deficiency,thus promoting N deficiency-induced leaf senescence.In conclusion,our results provide new insight into how MdNAC4 regulates N deficiency-induced leaf senescence.展开更多
基金supported by the National Natural Science Foundation of China(32072518 and 42141006)the Natural Science Foundation of Shandong Province(ZR2020QD042).
文摘●We studied the effect of nitrogen and biochar on CO_(2) emission from SOC and SIC.●Nitrogen increased SIC-derived CO_(2) by 41%but decreased SOC-derived CO_(2) by 20%.●Biochar reduced total soil-derived CO_(2) by neutralizing nitrogen-induced acidity.●We proposed a method for 3-or 4-source partitioning CO_(2) emission from calcareous soils.Biochar addition generally increases the alkalinity regeneration to resist soil acidification driven by nitrogen(N)fertilization.Calcareous soils contain soil organic carbon(SOC)and inorganic C(SIC).Owing to technical limitations in three-source partitioning CO_(2),how biochar addition affects SOC-and SIC-derived CO_(2) emission has not been clarified yet.Therefore,we conducted a 70-day incubation experiment of ammonium-N and maize-straw-derived biochar additions to investigate the N plus biochar impacts on SOC-and SIC-derived CO_(2) emission.Over the 70-day incubation,we found that the N-only addition increased the SIC-derived CO_(2) emission by approximately 41%compared with the control,but decreased the SOC-derived CO_(2) emission by approximately 20%.This suggests that the distinct responses of SIC-and SOC-derived CO_(2) emission to N-only addition come from N-induced acidification and preferential substrate(N)utilization of soil microorganisms,respectively.Compared with N-only addition,N plus biochar addition decreased the SIC-derived CO_(2) emission by 17%−20%during the first 20 days of incubation,but increased it by 54%during the next 50 days.This result suggested that biochar addition reduced the SIC-derived CO_(2) emission likely due to the alkalization capacity of biochar exceeding the acidification capacity of ammonium-N in the short term,but it may increase the SIC-derived CO_(2) emission induced by the weak acidity produced from biochar mineralization in the long term.This study is helpful to improve the quantification of CO_(2) emission from calcareous soils.
基金Open access funding provided by Shanghai Jiao Tong Universityfunded by Shandong Province Major Science and Technology Innovation Project(2018CXGC0209)+1 种基金Shandong Provincial Fruit Industry Technology System-Cultivation and Soil Fertilization Post(SDAIT-06-04)Natural Science Foundation of Shandong Provincial(ZR2020ZD18).
文摘Although it is well established that nitrogen(N)deficiency induces leaf senescence,the molecular mechanism of N deficiency-induced leaf senescence remains largely unknown.Here,we show that an abscisic acid(ABA)-responsive NAC transcription factor(TF)is involved in N deficiency-induced leaf senescence.The overexpression of MdNAC4 led to increased ABA levels in apple calli by directly activating the transcription of the ABA biosynthesis gene MdNCED2.In addition,MdNAC4 overexpression promoted N deficiency-induced leaf senescence.Further investigation showed that MdNAC4 directly bound the promoter of the senescence-associated gene(SAG)MdSAG39 and upregulated its expression.Interestingly,the function of MdNAC4 in promoting N deficiency-induced leaf senescence was enhanced in the presence of ABA.Furthermore,we identified an interaction between the ABA receptor protein MdPYL4 and the MdNAC4 protein.Moreover,MdPYL4 showed a function similar to that of MdNAC4 in ABA-mediated N deficiencyinduced leaf senescence.These findings suggest that ABA plays a central role in N deficiency-induced leaf senescence and that MdPYL4 interacts with MdNAC4 to enhance the response of the latter to N deficiency,thus promoting N deficiency-induced leaf senescence.In conclusion,our results provide new insight into how MdNAC4 regulates N deficiency-induced leaf senescence.