Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the stric...Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the strict transmission requirements on reliability and latency,Device-to-Device(D2D)communications is introduced to assist haptic communications.In particular,the teleoperators with poor channel quality are assisted by auxiliaries,and each auxiliary and its corresponding teleoperator constitute a D2D pair.However,the haptic interaction and the scarcity of radio resources pose severe challenges to the resource allocation,especially facing the sporadic packet arrivals.First,the contentionbased access scheme is applied to achieve low-latency transmission,where the resource scheduling latency is omitted and users can directly access available resources.In this context,we derive the reliability index of D2D pairs under the contention-based access scheme,i.e.,closed-loop packet error probability.Then,the reliability performance is guaranteed by bidirectional power control,which aims to minimize the sum packet error probability of all D2D pairs.Potential game theory is introduced to solve the problem with low complexity.Accordingly,a distributed power control algorithm based on synchronous log-linear learning is proposed to converge to the optimal Nash Equilibrium.Experimental results demonstrate the superiority of the proposed learning algorithm.展开更多
Efficient and reliable subcarrier power joint allocation is served as a promising problem in cognitive OFDM-based Cognitive Radio Networks (CRN). This paper focuses on optimal subcarrier allocation for OFDM-based CRN....Efficient and reliable subcarrier power joint allocation is served as a promising problem in cognitive OFDM-based Cognitive Radio Networks (CRN). This paper focuses on optimal subcarrier allocation for OFDM-based CRN. We mainly propose subcarrier allocation scheme denoted as Worst Subcarrier Avoiding Water-filling (WSAW), which is based on Rate Adaptive (RA) criterion and three constraints are considered in CRN. The algorithm divides the assignment procedure into two phases. The first phase is an initial subcarrier allocation based on the idea of avoiding selecting the worst subcarrier in order to maximize the transmission rate; while the second phase is an iterative adjustment process which is realized by swapping pairs of subcarriers between arbitrary users. The proposed scheme could assign subcarriers in accordance with channel coherence time. Hence, real time subcarrier allocation could be implemented. Simulation results show that, comparing with the similar existing algorithms, the proposed scheme could achieve larger capacity and a near-optimal BER performance.展开更多
Efficient anti-jamming rateless coding based on cognitive Orthogonal Frequency Division Multiplexing (OFDM) modulation in Cognitive Radio Network (CRN) is mainly discussed. Rateless coding with small redundancy and lo...Efficient anti-jamming rateless coding based on cognitive Orthogonal Frequency Division Multiplexing (OFDM) modulation in Cognitive Radio Network (CRN) is mainly discussed. Rateless coding with small redundancy and low complexity is presented, and the optimal design methods of building rateless codes are also proposed. In CRN, anti-jamming rateless coding could recover the lost packets in parallel channels of cognitive OFDM, thus it protects Secondary Users (SUs) from the in-terference by Primary Users (PUs) efficiently. Frame Error Rate (FER) and throughput performance of SU employing anti-jamming rateless coding are analyzed in detail. Performance comparison between rateless coding and piecewise coding are also presented. It is shown that, anti-jamming rateless coding provides low FER and Word Error Rate (WER) performance with uniform sub-channel selection. Meanwhile, it is also verified that, in higher jamming rate and longer code redundancy scenario, rateless coding method could achieve better FER and throughput performance than another anti-jamming coding schemes.展开更多
Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this pap...Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this paper presents a new kind of communication monitor DMS, which provides a communication monitoring interface and then by DMS, data transfer problem from field terminal unit to junction center station can be solved and the communication channels can also be supervised. At the same time, synthetically using computer communication, internet technology and database technology, this system can realize the real time monitoring and fault locating in the communication network.展开更多
An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Informa...An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.展开更多
Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity an...Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.展开更多
A kind of Web voice browser based on improved synchronous linear predictive coding (ISLPC) and Text-toSpeech (TTS) algorithm and Internet application was proposed. The paper analyzes the features of TTS system wit...A kind of Web voice browser based on improved synchronous linear predictive coding (ISLPC) and Text-toSpeech (TTS) algorithm and Internet application was proposed. The paper analyzes the features of TTS system with ISLPC speech synthesis and discusses the design and implementation of ISLPC TTS-based Web voice browser. The browser integrates Web technology, Chinese information processing, artificial intelligence and the key technology of Chinese ISLPC speech synthesis. It's a visual and audible web browser that can improve information precision for network users. The evaluation results show that ISLPC-based TTS model has a better performance than other browsers in voice quality and capability of identifying Chinese characters.展开更多
Dual-hop cooperative Multiple-Input Multiple-Output (MIMO) network with multi-relay cooperative communication is introduced. Power allocation problem with Amplify-and-Forward (AF) and Selective Decode-and-Forward (SDF...Dual-hop cooperative Multiple-Input Multiple-Output (MIMO) network with multi-relay cooperative communication is introduced. Power allocation problem with Amplify-and-Forward (AF) and Selective Decode-and-Forward (SDF) strategies in multi-node scenario are formulated and solved respectively. Optimal power allocation schemes that maximize system capacity with AF strategy are presented. In addition, optimal power allocation methods that minimize asymptotic Symbol Error Rate (SER) with SDF cooperative protocol in multi-node scenario are also proposed. Furthermore, performance comparisons are provided in terms of system capacity and approximate SER. Numerical and simulation results confirm our theoretical analysis. It is revealed that, maximum system capacity could be obtained when powers are allocated optimally with AF protocol, while minimization of system's SER could also be achieved with optimum power allocation in SDF strategy. In multi-node scenario, those optimal power allocation algorithms are superior to conventional equal power allocation schemes.展开更多
A graph model is constructed for the Multi-user Detection of DS-CDMA system. Based on it, a Hopfield-like algorithm is put forward for the implementation of optimum receiver. Compared with the Hopfield approach, it ha...A graph model is constructed for the Multi-user Detection of DS-CDMA system. Based on it, a Hopfield-like algorithm is put forward for the implementation of optimum receiver. Compared with the Hopfield approach, it has a higher computational complexity but better performance.展开更多
One of the major challenges for beyond third generation mobile .systems is efficient mobility management. This paper proposes a distributed dynamic management .scheme of handoff based on B3G networks. This scheme can ...One of the major challenges for beyond third generation mobile .systems is efficient mobility management. This paper proposes a distributed dynamic management .scheme of handoff based on B3G networks. This scheme can reduce the cost of update signalling and transmitting packets, and improve the system capability. In this scheme, the dynamic building network approach is adopted to deduce the update signalling cost. We implement the distributed dynamic management scheme of handoff in a simulation platform and compare its performance with that of general centralized handoff management schemes. Our simulation results indicate that our scheme is capable of reducing the update handoff latency, and enhancing the performance.展开更多
Due to the scattering effect of suspended particles in the atmosphere, foggy day images have reduced visibility and contrast significantly. Considering the loss of details and uneven defogging results of the contrast ...Due to the scattering effect of suspended particles in the atmosphere, foggy day images have reduced visibility and contrast significantly. Considering the loss of details and uneven defogging results of the contrast limited adaptive histogram equalization (CLAHE) algorithm, a curvelet transform and contrast adaptive clip histogram equalization (HE)-based foggy day image enhancement algorithm is proposed. The proposed algorithm transforms an image to the curvelet domain and enhances the image detail information via a nonlinear transformation of high frequency curvelet coefficients. After curvelet reconstruction, the contrast adaptive clip HE method is adopted to enhance the total image contrast and the foggy day image contrast and detail information. During the histogram clipping process, the clip limit value is adaptively selected based on image contrast and the sub-block image histogram variance. A comparative analysis of the foggy day image enhancement results are obtained by applying CLAHE, and some classical single image defogging algorithms and the proposed algorithm are also conducted to prove the effectiveness of the proposed algorithm with objective parameters.展开更多
Based on a discussion of the requirements for the multiple acess control protocol of beyond thlrd-generation mobile systems, we in this paper articulate the needs of the new multiple acess control protocol with suppor...Based on a discussion of the requirements for the multiple acess control protocol of beyond thlrd-generation mobile systems, we in this paper articulate the needs of the new multiple acess control protocol with support of high-speed transmission and guaranteed quality of service, for voice, video and audio. In light of these, we present the design of a new multiple acess control protocol, called intelligent slot-subcarriered assignment multiple acess control protocol, to support multiple service categories and to yield high spectral efficiency. Our simulation results verify that intelligent slot-subcarriered assignment multiple acess control protocol can not only provide low delays for the real-time traffic by using bandwidth reservation and effectual scheduling, but also make full use of the limited bandwidth by using a dynamic sub-carrier assignment algorithm.展开更多
基金supported in part by the Jiangsu Provincial Natural Science Foundation for Excellent Young Scholars(Grant No.BK20170089)in part by the National Natural Science Foundation of China(Grant No.61671474)in part by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(Grant No.BK20180028).
文摘Haptic communications is recognized as a promising enabler of extensive services by enabling real-time haptic control and feedback in remote environments,e.g.,teleoperation and autonomous driving.Considering the strict transmission requirements on reliability and latency,Device-to-Device(D2D)communications is introduced to assist haptic communications.In particular,the teleoperators with poor channel quality are assisted by auxiliaries,and each auxiliary and its corresponding teleoperator constitute a D2D pair.However,the haptic interaction and the scarcity of radio resources pose severe challenges to the resource allocation,especially facing the sporadic packet arrivals.First,the contentionbased access scheme is applied to achieve low-latency transmission,where the resource scheduling latency is omitted and users can directly access available resources.In this context,we derive the reliability index of D2D pairs under the contention-based access scheme,i.e.,closed-loop packet error probability.Then,the reliability performance is guaranteed by bidirectional power control,which aims to minimize the sum packet error probability of all D2D pairs.Potential game theory is introduced to solve the problem with low complexity.Accordingly,a distributed power control algorithm based on synchronous log-linear learning is proposed to converge to the optimal Nash Equilibrium.Experimental results demonstrate the superiority of the proposed learning algorithm.
基金Supported by the National Natural Science Foundation of China (NSFC) (No. 61102066)the China Postdoctoral Science Foundation (Grant No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No. Y201119890)
文摘Efficient and reliable subcarrier power joint allocation is served as a promising problem in cognitive OFDM-based Cognitive Radio Networks (CRN). This paper focuses on optimal subcarrier allocation for OFDM-based CRN. We mainly propose subcarrier allocation scheme denoted as Worst Subcarrier Avoiding Water-filling (WSAW), which is based on Rate Adaptive (RA) criterion and three constraints are considered in CRN. The algorithm divides the assignment procedure into two phases. The first phase is an initial subcarrier allocation based on the idea of avoiding selecting the worst subcarrier in order to maximize the transmission rate; while the second phase is an iterative adjustment process which is realized by swapping pairs of subcarriers between arbitrary users. The proposed scheme could assign subcarriers in accordance with channel coherence time. Hence, real time subcarrier allocation could be implemented. Simulation results show that, comparing with the similar existing algorithms, the proposed scheme could achieve larger capacity and a near-optimal BER performance.
基金Supported by the National Natural Science Foundation of China (No. 60972039)the Scientific Planning Project of Zhejiang Province entitled "Research and Development of Smart Antenna for the Next Generation Mobile Com-munications Based on TDD"the Young Staff Startup Research Foundation of Hangzhou Dianzi University entitled "Research on Key Technologies of Resource Allocation in Cognitive Radio Networks Based on Multicarrier Modulation"
文摘Efficient anti-jamming rateless coding based on cognitive Orthogonal Frequency Division Multiplexing (OFDM) modulation in Cognitive Radio Network (CRN) is mainly discussed. Rateless coding with small redundancy and low complexity is presented, and the optimal design methods of building rateless codes are also proposed. In CRN, anti-jamming rateless coding could recover the lost packets in parallel channels of cognitive OFDM, thus it protects Secondary Users (SUs) from the in-terference by Primary Users (PUs) efficiently. Frame Error Rate (FER) and throughput performance of SU employing anti-jamming rateless coding are analyzed in detail. Performance comparison between rateless coding and piecewise coding are also presented. It is shown that, anti-jamming rateless coding provides low FER and Word Error Rate (WER) performance with uniform sub-channel selection. Meanwhile, it is also verified that, in higher jamming rate and longer code redundancy scenario, rateless coding method could achieve better FER and throughput performance than another anti-jamming coding schemes.
文摘Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this paper presents a new kind of communication monitor DMS, which provides a communication monitoring interface and then by DMS, data transfer problem from field terminal unit to junction center station can be solved and the communication channels can also be supervised. At the same time, synthetically using computer communication, internet technology and database technology, this system can realize the real time monitoring and fault locating in the communication network.
基金Supported by the National Natural Science Foundation of China (No. 61102066, 60972058)the China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No. Y201119890)
文摘An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.
基金Supported by the National Natural Science Foundation of China (No. 61102066)China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No.Y201119890)
文摘Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.
基金Supported by the National High-Technology Re-search and Development Program(2005AA122210) the National Out-standing Youth Foundation (60325104)
文摘A kind of Web voice browser based on improved synchronous linear predictive coding (ISLPC) and Text-toSpeech (TTS) algorithm and Internet application was proposed. The paper analyzes the features of TTS system with ISLPC speech synthesis and discusses the design and implementation of ISLPC TTS-based Web voice browser. The browser integrates Web technology, Chinese information processing, artificial intelligence and the key technology of Chinese ISLPC speech synthesis. It's a visual and audible web browser that can improve information precision for network users. The evaluation results show that ISLPC-based TTS model has a better performance than other browsers in voice quality and capability of identifying Chinese characters.
基金Supported by National Natural Science Foundation of China (NSFC) (No. 60972039)National High Technology Research and Development Program of China (No.2009AA01Z241)Innovation Program for Ph.D. and Postgraduate Candidates in Jiangsu Province (No.CX09B_147Z)
文摘Dual-hop cooperative Multiple-Input Multiple-Output (MIMO) network with multi-relay cooperative communication is introduced. Power allocation problem with Amplify-and-Forward (AF) and Selective Decode-and-Forward (SDF) strategies in multi-node scenario are formulated and solved respectively. Optimal power allocation schemes that maximize system capacity with AF strategy are presented. In addition, optimal power allocation methods that minimize asymptotic Symbol Error Rate (SER) with SDF cooperative protocol in multi-node scenario are also proposed. Furthermore, performance comparisons are provided in terms of system capacity and approximate SER. Numerical and simulation results confirm our theoretical analysis. It is revealed that, maximum system capacity could be obtained when powers are allocated optimally with AF protocol, while minimization of system's SER could also be achieved with optimum power allocation in SDF strategy. In multi-node scenario, those optimal power allocation algorithms are superior to conventional equal power allocation schemes.
文摘A graph model is constructed for the Multi-user Detection of DS-CDMA system. Based on it, a Hopfield-like algorithm is put forward for the implementation of optimum receiver. Compared with the Hopfield approach, it has a higher computational complexity but better performance.
文摘One of the major challenges for beyond third generation mobile .systems is efficient mobility management. This paper proposes a distributed dynamic management .scheme of handoff based on B3G networks. This scheme can reduce the cost of update signalling and transmitting packets, and improve the system capability. In this scheme, the dynamic building network approach is adopted to deduce the update signalling cost. We implement the distributed dynamic management scheme of handoff in a simulation platform and compare its performance with that of general centralized handoff management schemes. Our simulation results indicate that our scheme is capable of reducing the update handoff latency, and enhancing the performance.
基金supported by the National Natural Science Foundation of China(61631009,41704103)
文摘Due to the scattering effect of suspended particles in the atmosphere, foggy day images have reduced visibility and contrast significantly. Considering the loss of details and uneven defogging results of the contrast limited adaptive histogram equalization (CLAHE) algorithm, a curvelet transform and contrast adaptive clip histogram equalization (HE)-based foggy day image enhancement algorithm is proposed. The proposed algorithm transforms an image to the curvelet domain and enhances the image detail information via a nonlinear transformation of high frequency curvelet coefficients. After curvelet reconstruction, the contrast adaptive clip HE method is adopted to enhance the total image contrast and the foggy day image contrast and detail information. During the histogram clipping process, the clip limit value is adaptively selected based on image contrast and the sub-block image histogram variance. A comparative analysis of the foggy day image enhancement results are obtained by applying CLAHE, and some classical single image defogging algorithms and the proposed algorithm are also conducted to prove the effectiveness of the proposed algorithm with objective parameters.
文摘Based on a discussion of the requirements for the multiple acess control protocol of beyond thlrd-generation mobile systems, we in this paper articulate the needs of the new multiple acess control protocol with support of high-speed transmission and guaranteed quality of service, for voice, video and audio. In light of these, we present the design of a new multiple acess control protocol, called intelligent slot-subcarriered assignment multiple acess control protocol, to support multiple service categories and to yield high spectral efficiency. Our simulation results verify that intelligent slot-subcarriered assignment multiple acess control protocol can not only provide low delays for the real-time traffic by using bandwidth reservation and effectual scheduling, but also make full use of the limited bandwidth by using a dynamic sub-carrier assignment algorithm.