In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width a...In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width and energy of the precursor and main burst.We systematically search the light curve data observed by Swift/BAT and Fermi/GBM,and find 13 long bursts with well-structured precursors and main bursts.After fitting the precursor light curve of each different energy channel with the Norris function,we find that there is not only a power-law relationship between precursor width and energy,but also a power-law relationship between the ratio of the rising width to the decaying width and energy.By comparing the relationship between the precursors and the main burst pulses,we find that the distribution of the precursors and the relationship between the power-law indices are roughly the same as those of the main burst.In addition,it is found that the precursor width distribution as well as the upper limit of the pulse width ratio does not exceed 1 and both are asymmetric,which are also consistent with the main burst.These indicate that the precursor and the main burst are indistinguishable,and the precursor and the main burst may have the same physical origin.展开更多
Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is a...Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is also found to influence the study of exciton ground state energy and ground state binding energy in Al_(x)Ga_(1−x)As semiconductor spherical quantum dots.The Al_(x)Ga_(1−x)As is considered to be a direct semiconductor at AI concentration below 0.45,and an indirect one at the concentration above 0.45.With regards to the former,the ground state binding energy increases and decreases with AI concentration and eigenfrequency,respectively;however,while the ground state energy increases with AI concentration,it is marginally influenced by eigenfrequency.On the other hand,considering the latter,while the ground state binding energy increases with AI concentration,it decreases with eigenfrequency;nevertheless,the ground state energy increases both with AI concentration and eigenfrequency.Hence,for the better practical performance of the semiconductors,the properties of the excitons are suggested to vary by adjusting AI concentration and eigenfrequency.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as...In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as micro morphology and phase composition of magnesium oxychloride cement(MOC)was studied.The experimental results indicate that,with the increase of content of doping sand,the compressive strength and flexural strength of MOC decrease significantly.However,when the quality ratio of aeolian sand and light burned magnesia powder is 1:8,the performance meets the actual engineering needs.Namely,the compressive strength of MOC is not less than 18 MPa,and flexural strength is not less than 4 MPa.Meanwhile,within 12 months of age,the compressive strength and flexural strength are stable.There is no obvious change in phase composition,and its main phase is still 5·1·8 phase.Microscopic appearance changes from needle-like to gel-like shape.Based on engineering applications,it is found that when the novel sand-fixing material is used in the field for one year,its macroscopic feature is not damaged,compressive strength and flexural strength are also more stable,phase composition negligibly changes,and micro morphology has also been turned into be gellike shape.These further confirm the long-term stability and weather resistance of MOC doping aeolian sand,providing theoretical and technical support for the widely application of MOC in the field of sand fixation in the future.展开更多
Quantum teleportation is designed to send an unknown quantum state between two parties.In the perspective of remote quantum metrology,one may be interested in teleporting the information that is encoded by physical pa...Quantum teleportation is designed to send an unknown quantum state between two parties.In the perspective of remote quantum metrology,one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information(QFI).However,the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment.Here,we propose two schemes to improve the teleportation of QFI in the non-Markovian environment.One is to control the quantum system through the operations of weak measurement(WM)and corresponding quantum measurement reversal(QMR).The other is to modify the quantum system based on the monitoring result of the environment(i.e.,environment-assisted measurement,EAM).It is found that,in the non-Markovian environment,these two schemes can improve the teleportation of QFI.By selecting the appropriate strengths of WM and QMR,the environment noise can be completely eliminated and the initial QFI is perfectly teleported.A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one,but also has a significant improvement of the teleported QFI.展开更多
We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtain...We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtained results showed that under magnetic field effect,magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons.At the same time,magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases.This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.展开更多
Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)t...Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)to retrieve the CTP.However,the CTP retrieved by the two methods shows inconsistent results in certain cases,and large uncertainties in low and thin cloud retrievals,which may lead to challenges in subsequent applications.This study proposes a synergistic algorithm that considers both O_(2)A-bands and polarized bands using a random forest(RF)model.LiDAR CTP data are used as the true values and the polarized and non-polarized measurements are concatenated to train the RF model to determine CTP.Additionally,through analysis,we proposed that the polarized signal becomes saturated as the cloud optical thickness(COT)increases,necessitating a particular treatment for cases where COT<10 to improve the algorithm's stability.The synergistic method was then applied to the directional polarized camera(DPC)and Polarized and Directionality of the Earth’s Reflectance(POLDER)measurements for evaluation,and the resulting retrieval accuracy of the POLDER-based measurements(RMSEPOLDER=205.176 hPa,RMSEDPC=171.141 hPa,R^(2)POLDER=0.636,R^(2)DPC=0.663,respectively)were higher than that of the MODIS and POLDER Rayleigh pressure measurements.The synergistic algorithm also showed good performance with the application of DPC data.This algorithm is expected to provide data support for atmosphere-related fields as an atmospheric remote sensing algorithm within the Cloud Application for Remote Sensing,Atmospheric Radiation,and Updating Energy(CARE)platform.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ...Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.展开更多
Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achiev...Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achieve this.We focus on a series of alloyed hydrides with the AMH_(6)composition,which can be made via alloying A15 AH_(3)(A=Al or Ga)with M(M=a group IIIB or IVB metal),and study their behavior under pressure.Seven of them are predicted to maintain the A15-type structure,similar to AH_(3)under pressure,providing a platform for studying the effects of alloying on the stability and superconductivity of AH_(3).Among these,the A15-type phases of AlZrH_(6)and AlHfH_(6)are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa,respectively.Furthermore,they remain dynamically stable at even lower pressures,as low as 13 GPa for AlZrH_(6)and 6 GPa for AlHfH_(6).These pressures are significantly lower than that required for stabilizing A15 AlH3.Additionally,the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3.This enhancement leads to higher critical temperatures(Tc)of 75 and 76 K for AlZrH_(6)and AlHfH_(6)at 20 and 10 GPa,respectively.In the case of GaMH_(6)alloys,where M represents Sc,Ti,Zr,or Hf,these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH_(3) from 160 GPa to 116,95,80,and 85 GPa,respectively.Particularly noteworthy are the A15-type GaMH_(6)alloys,which remain dynamically stable at low pressures of 97,28,5,and 6 GPa,simultaneously exhibiting high Tc of 88,39,70,and 49 K at 100,35,10,and 10 GPa,respectively.Overall,these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures.展开更多
The effect of In doping on the electronic structure and optical properties of Sr2 TiO4 is investigated by a firstprinciples calculation of plane wave ultrasoft pseudopotentials based on density functional theory. The ...The effect of In doping on the electronic structure and optical properties of Sr2 TiO4 is investigated by a firstprinciples calculation of plane wave ultrasoft pseudopotentials based on density functional theory. The calculated results reveal that corner-shared TiO6 octahedra dominate the main electronic properties of Sr2TiO4 and the covalency of the Ti-O(1) bond in the ab plane is stronger than that of the Ti-O(2) bond along the c-axis. After In doping, there is a little lattice expansion in Sr2In0.125 Ti0.875 O4 and the interaction between the Ti-O bond near the impurity In atom is weakened. The binding energies of Sr2TiO4 and Sr2In0.125Ti0.875O4 estimated from the electronic structure calculations indicate that the crystal structure of Sr2In0.125 Ti0.875 O4 is still stable after doping, but its stability is lower than that of undoped Sr2TiO4. Moreover, the valence bands (VBs) of the Sr2In0.125Ti0.875O4 system consist of O 2p and In 4d states, and the mixing of O 2p and In 4d states makes the top VBs shift significantly to high energies, resulting in visible light absorption. The adsorption of visible light is of practical importance for the application of St2 TiO4 as a photocatalyst.展开更多
We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2,SrN2 and BaN2.The ground state properties of three alkaline earth diazenid...We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2,SrN2 and BaN2.The ground state properties of three alkaline earth diazenides were obtained,and these were in good agreement with previous experimental and theoretical data.By using the quasi-harmonic Debye model,the thermodynamic properties including the debye temperature ΘD,thermal expansion coefficient α,and gruneisen parameter y are successfully obtained in the temperature range from 0 to 100 K and pressure range from 0 to 100 GPa,respectively.The optical properties including dielectric function ε(ω),absorption coefficient α(ω),reflectivity coefficient R(ω),and refractive index n(ω) are also calculated and analyzed.展开更多
The geometric structure, electronic structure, optical properties and the formation energy of Sb-doped ZnO with the wurtzite structure are investigated using the first-principles ultra-soft pseudo-potential approach o...The geometric structure, electronic structure, optical properties and the formation energy of Sb-doped ZnO with the wurtzite structure are investigated using the first-principles ultra-soft pseudo-potential approach of plane wave based upon the density functional theory. The calculated results indicate that the volume of ZnO doped with Sb becomes larger, and the doping system yields the lowest formation energy of Sb on the interstitial site and the oxygen site. Furthermore, Sb dopant first occupies the octahedral oxygen sites of the wurtzite structure. It is found that Sb substituting on oxygen site behaves as a deep acceptor and shows the p-type degenerate semiconductor character. After doping, the electron density difference demonstrates the considerable electron charge density redistribution, which induces the effect of Sb-doped ZnO to increase the charge overlap between atoms. The density of states move towards lower energy and the optical band gap is broadened. Our culated results are in agreement with other experimental results and could make more precise monitoring and controlling possible during the growth of ZnO p-type materials.展开更多
The electronic structures and magnetic properties of(Mn, N)-codoped Zn O are investigated by using the firstprinciples calculations. In the ferromagnetic state, as N substitutes for the intermediate O atom of the ne...The electronic structures and magnetic properties of(Mn, N)-codoped Zn O are investigated by using the firstprinciples calculations. In the ferromagnetic state, as N substitutes for the intermediate O atom of the nearest neighboring Mn ions, about 0.5 electron per Mn^2+ion transfers to the N^2-ion, which leads to the high-state Mn ions(close to +2.5)and trivalent N3-ions. In an antiferromagnetic state, one electron transfers to the N2-ion from the downspin Mn2+ion,while no electron transfer occurs for the upspin Mn^2+ion. The(Mn, N)-codoped Zn O system shows ferromagnetism,which is attributed to the hybridization between Mn 3d and N 2p orbitals.展开更多
With first-principles virtual-crystal approximation calculations, we systematically investigate the geometric and elec- tronic structures as well as the phase transition of lead zirconate titanate (PbZr 1-xTixO3 or ...With first-principles virtual-crystal approximation calculations, we systematically investigate the geometric and elec- tronic structures as well as the phase transition of lead zirconate titanate (PbZr 1-xTixO3 or PZT) as a function of Ti content for the whole range of 0 〈 XTi 〈 1. It can be found that, with the increase of the Ti content, the PbZr1-xTixO3 solid solutions undergo a rhombohedral-to-tetragonal phase transition, which is consistent with the experimental results. In addition, we also show the evolution in geometric and electronic structures of rhombohedral and tetragonal PbZr1-xTixO3 with the increasing content of Ti.展开更多
We preform first-principle calculations for the geometric, electronic structures and optical properties of SiC nanowires(NWs). The dielectric functions dominated by electronic interband transitions are investigated ...We preform first-principle calculations for the geometric, electronic structures and optical properties of SiC nanowires(NWs). The dielectric functions dominated by electronic interband transitions are investigated in terms of the calculated optical response functions. The calculated results reveal that the SiC NW is an indirect band-gap semiconductor material except at a minimum SiC NW(n = 12) diameter, showing that the NW(n = 12) is metallic. Charge density indicates that the Si–C bond of SiC NW has mixed ionic and covalent characteristics: the covalent character is stronger than the ionic character, and shows strong s–p hybrid orbit characteristics. Moreover, the band gap increases as the SiC NW diameter increases. This shows a significant quantum size and surface effect. The optical properties indicate that the obvious dielectric absorption peaks shift towards the high energy, and that there is a blue shift phenomenon in the ultraviolet region. These results show that SiC NW is a promising optoelectronic material for the potential applications in ultraviolet photoelectron devices.展开更多
The effects of solidification rate and excessive Fe on phase formation and magnetocaloric properties of LaFe11.6xSi1.4(x=1.1,1.2)were investigated by XRD,SEM and VSM measurements.The XRD results show that the amount o...The effects of solidification rate and excessive Fe on phase formation and magnetocaloric properties of LaFe11.6xSi1.4(x=1.1,1.2)were investigated by XRD,SEM and VSM measurements.The XRD results show that the amount of LaFeSi phase in the as-cast melt-spun ribbons prepared by a copper wheel at a speed of10m/s is less than that in the as-cast arc melting buttons with the same x values.The annealed melt-spun ribbons contain smaller amount of La(Fe,Si)13(1:13)phase than the corresponding annealed arc melting buttons.Although the melt-spun sample has finer crystalline grains ofα-Fe,as indicated by SEM analysis,its crystalline size has not reached nano-scale.Therefore,the magnetic exchange-coupling between1:13phase andα-Fe phase has not been observed in melt-spun ribbons.Further,the maximum negative magnetic entropy change(?SMax)and relative cooling power(RCP)of annealed melt-spun ribbons under a field change of0?2T are weaker than those of the corresponding annealed arc melting buttons.展开更多
Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were di...Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were discussed.First,using the Lagrange equation of the second kind,the dynamic model of the system was derived.Second,utilizing singular perturbation theory,a slow subsystem describing the rigid motion and a fast subsystem corresponding to flexible vibration were obtained.For the slow subsystem,when the width of deadzone is uncertain,a dead-zone pre-compensator was designed to eliminate the impact of joint torque output dead-zone,and an integral sliding mode neural network control was proposed.The integral sliding mode term can reduce the steady state error.For the fast subsystem,an optimal linear quadratic regulator(LQR)controller was adopted to damp out the vibration of the flexible links and elastic base simultaneously.Finally,computer simulations show the effectiveness of the compound control method.展开更多
Al-doped ZnO transparent conductive oxide thin films(AZO)are prepared by the magnetron sputtering method.The structural,optical and mechanical properties of the AZO films are studied systematically.The average haze of...Al-doped ZnO transparent conductive oxide thin films(AZO)are prepared by the magnetron sputtering method.The structural,optical and mechanical properties of the AZO films are studied systematically.The average haze of the AZO sample is increased from 0.34%to 23.6%through wet etching treatment between 380 and 1100nm,and the etched AZO sample has a higher average transmittance of about 82.3%in infrared wavelength range from 760 to 1100nm due to the reduction of absorption by carriers.The average hardness and elastic modulus of the as-deposited AZO films,as determined using the nanoindentation technique,are approximately 10.2 GPa and 130 GPa,respectively.The critical fracture load related to the adhesion strength is about 91 mN.The optimized optical and electrical properties and referable mechanical data indicate that AZO films have good prospects for commercial applications.展开更多
The Cr-doped hydrogen-GLC films were prepared by a hybrid magnetron sputtering system composed of a direct current magnetron sputtering (DC-MS) source of carbon and a high power impulse magnetron sputtering (HIPIMS) s...The Cr-doped hydrogen-GLC films were prepared by a hybrid magnetron sputtering system composed of a direct current magnetron sputtering (DC-MS) source of carbon and a high power impulse magnetron sputtering (HIPIMS) source of Cr with reactive gas of C2H2.The hydrogen-free GLC and Cr-doped GLC films were also prepared for comparison.The influence of substrate bias on the Cr-doped hydrogen-GLC films was investigated.With the increase of substrate bias from 100 V to 250 V,the re-sputtering of weak bonding sp2 firstly occurred and induced an increased sp3 bonding.However,the following sp3 to sp2 transformation resulted in a decreased sp3 bonding.The change trends of surface roughness and friction coefficient with the increased bias voltages were the same as those of sp3 bond.The lowest surface roughness and lowest friction coefficient corresponded to the highest sp3 with the Cr-GLC-H films at the bias voltage of-100 V.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12163007,11763009)。
文摘In gamma-ray burst prompt emission,there is still no consistent conclusion if the precursor and main burst share the same origin.In this paper,we try to study this issue based on the relationship between pulse width and energy of the precursor and main burst.We systematically search the light curve data observed by Swift/BAT and Fermi/GBM,and find 13 long bursts with well-structured precursors and main bursts.After fitting the precursor light curve of each different energy channel with the Norris function,we find that there is not only a power-law relationship between precursor width and energy,but also a power-law relationship between the ratio of the rising width to the decaying width and energy.By comparing the relationship between the precursors and the main burst pulses,we find that the distribution of the precursors and the relationship between the power-law indices are roughly the same as those of the main burst.In addition,it is found that the precursor width distribution as well as the upper limit of the pulse width ratio does not exceed 1 and both are asymmetric,which are also consistent with the main burst.These indicate that the precursor and the main burst are indistinguishable,and the precursor and the main burst may have the same physical origin.
基金supported by the National Natural Science Foundation of China(Nos.12164032 and 11964026)the Natural Science Foundation of Inner Mongolia(No.2019MS01010)+3 种基金Scientific Research Projects in Colleges and Universities in Inner Mongolia(No.NJZZ19145)Graduate Science Innovative Research Projects(No.S20210281Z)the Natural Science Foundation of Inner Mongolia(No.2022MS01014)Doctor Research Start-up Fund of Inner Mongolia Minzu University(No.BS625).
文摘Excitons have significant impacts on the properties of semiconductors.They exhibit significantly different properties when a direct semiconductor turns in to an indirect one by doping.Huybrecht variational method is also found to influence the study of exciton ground state energy and ground state binding energy in Al_(x)Ga_(1−x)As semiconductor spherical quantum dots.The Al_(x)Ga_(1−x)As is considered to be a direct semiconductor at AI concentration below 0.45,and an indirect one at the concentration above 0.45.With regards to the former,the ground state binding energy increases and decreases with AI concentration and eigenfrequency,respectively;however,while the ground state energy increases with AI concentration,it is marginally influenced by eigenfrequency.On the other hand,considering the latter,while the ground state binding energy increases with AI concentration,it decreases with eigenfrequency;nevertheless,the ground state energy increases both with AI concentration and eigenfrequency.Hence,for the better practical performance of the semiconductors,the properties of the excitons are suggested to vary by adjusting AI concentration and eigenfrequency.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
基金Funded by the Applied Basic Research in Qinghai Province(No.2021-ZJ-737)the Excellent Demonstration Courses for Graduate Students of Qinghai Minzu University(No.JK-2022-09)the Top Talents of‘Kunlun Talents High-end Innovation and Entrepreneurship Talents’of Qinghai Province。
文摘In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as micro morphology and phase composition of magnesium oxychloride cement(MOC)was studied.The experimental results indicate that,with the increase of content of doping sand,the compressive strength and flexural strength of MOC decrease significantly.However,when the quality ratio of aeolian sand and light burned magnesia powder is 1:8,the performance meets the actual engineering needs.Namely,the compressive strength of MOC is not less than 18 MPa,and flexural strength is not less than 4 MPa.Meanwhile,within 12 months of age,the compressive strength and flexural strength are stable.There is no obvious change in phase composition,and its main phase is still 5·1·8 phase.Microscopic appearance changes from needle-like to gel-like shape.Based on engineering applications,it is found that when the novel sand-fixing material is used in the field for one year,its macroscopic feature is not damaged,compressive strength and flexural strength are also more stable,phase composition negligibly changes,and micro morphology has also been turned into be gellike shape.These further confirm the long-term stability and weather resistance of MOC doping aeolian sand,providing theoretical and technical support for the widely application of MOC in the field of sand fixation in the future.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61765007 and 12265004)Jiangxi Provincial Natural Science Foundation,China (Grant No.20212ACB211004)Innovation Foundation of Jiangxi University of Science and Technology (Grant No.XY2021-S088)。
文摘Quantum teleportation is designed to send an unknown quantum state between two parties.In the perspective of remote quantum metrology,one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information(QFI).However,the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment.Here,we propose two schemes to improve the teleportation of QFI in the non-Markovian environment.One is to control the quantum system through the operations of weak measurement(WM)and corresponding quantum measurement reversal(QMR).The other is to modify the quantum system based on the monitoring result of the environment(i.e.,environment-assisted measurement,EAM).It is found that,in the non-Markovian environment,these two schemes can improve the teleportation of QFI.By selecting the appropriate strengths of WM and QMR,the environment noise can be completely eliminated and the initial QFI is perfectly teleported.A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one,but also has a significant improvement of the teleported QFI.
基金the National Natural Science Foundation of China(Grant Nos.12164032,11964026,and 12364010)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant Nos.2019MS01010,2022MS01014,and 2020BS01009)+1 种基金the Doctor Research Start-up Fund of Inner Mongolia Minzu University(Grant Nos.BS625 and BS439)the Basic Research Funds for Universities Directly under the Inner Mongolia Autonomous Region,China(Grant No.GXKY23Z029).
文摘We have applied strong coupling unitary transformation method combined with Bose–Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells.The obtained results showed that under magnetic field effect,magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons.At the same time,magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases.This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.
基金the National Natural Science Foundation of China(Grant Nos.42025504,No.41905023)National Natural Science Youth Science Foundation(Grant No.41701406)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.:2021122).
文摘Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)to retrieve the CTP.However,the CTP retrieved by the two methods shows inconsistent results in certain cases,and large uncertainties in low and thin cloud retrievals,which may lead to challenges in subsequent applications.This study proposes a synergistic algorithm that considers both O_(2)A-bands and polarized bands using a random forest(RF)model.LiDAR CTP data are used as the true values and the polarized and non-polarized measurements are concatenated to train the RF model to determine CTP.Additionally,through analysis,we proposed that the polarized signal becomes saturated as the cloud optical thickness(COT)increases,necessitating a particular treatment for cases where COT<10 to improve the algorithm's stability.The synergistic method was then applied to the directional polarized camera(DPC)and Polarized and Directionality of the Earth’s Reflectance(POLDER)measurements for evaluation,and the resulting retrieval accuracy of the POLDER-based measurements(RMSEPOLDER=205.176 hPa,RMSEDPC=171.141 hPa,R^(2)POLDER=0.636,R^(2)DPC=0.663,respectively)were higher than that of the MODIS and POLDER Rayleigh pressure measurements.The synergistic algorithm also showed good performance with the application of DPC data.This algorithm is expected to provide data support for atmosphere-related fields as an atmospheric remote sensing algorithm within the Cloud Application for Remote Sensing,Atmospheric Radiation,and Updating Energy(CARE)platform.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
文摘Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.
基金supported by the Natural Science Foundation of China(Grant Nos.52022089,52372261,52288102,and 11964026)the National Key R&D Program of China(Grant No.2022YFA1402300)+5 种基金the Natural Science Foundation of Hebei Province(Grant No.E2022203109)the Doctoral Fund of Henan University of Technology(Grant No.31401579)P.L.thanks the Science and Technology Leading Talents and Innovation Team Building Projects of the Inner Mongolia Autonomous Region(Grant No.GXKY22060)financial support from the Spanish Ministry of Science and Innovation(Grant No.FIS2019-105488GB-I00)the Department of Education,Universities and Research of the Basque Government and the University of the Basque Country(Grant No.IT1707-22)the National Science Foundation(Grant No.DMR-2136038)for financial support.
文摘Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achieve this.We focus on a series of alloyed hydrides with the AMH_(6)composition,which can be made via alloying A15 AH_(3)(A=Al or Ga)with M(M=a group IIIB or IVB metal),and study their behavior under pressure.Seven of them are predicted to maintain the A15-type structure,similar to AH_(3)under pressure,providing a platform for studying the effects of alloying on the stability and superconductivity of AH_(3).Among these,the A15-type phases of AlZrH_(6)and AlHfH_(6)are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa,respectively.Furthermore,they remain dynamically stable at even lower pressures,as low as 13 GPa for AlZrH_(6)and 6 GPa for AlHfH_(6).These pressures are significantly lower than that required for stabilizing A15 AlH3.Additionally,the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3.This enhancement leads to higher critical temperatures(Tc)of 75 and 76 K for AlZrH_(6)and AlHfH_(6)at 20 and 10 GPa,respectively.In the case of GaMH_(6)alloys,where M represents Sc,Ti,Zr,or Hf,these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH_(3) from 160 GPa to 116,95,80,and 85 GPa,respectively.Particularly noteworthy are the A15-type GaMH_(6)alloys,which remain dynamically stable at low pressures of 97,28,5,and 6 GPa,simultaneously exhibiting high Tc of 88,39,70,and 49 K at 100,35,10,and 10 GPa,respectively.Overall,these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures.
文摘The effect of In doping on the electronic structure and optical properties of Sr2 TiO4 is investigated by a firstprinciples calculation of plane wave ultrasoft pseudopotentials based on density functional theory. The calculated results reveal that corner-shared TiO6 octahedra dominate the main electronic properties of Sr2TiO4 and the covalency of the Ti-O(1) bond in the ab plane is stronger than that of the Ti-O(2) bond along the c-axis. After In doping, there is a little lattice expansion in Sr2In0.125 Ti0.875 O4 and the interaction between the Ti-O bond near the impurity In atom is weakened. The binding energies of Sr2TiO4 and Sr2In0.125Ti0.875O4 estimated from the electronic structure calculations indicate that the crystal structure of Sr2In0.125 Ti0.875 O4 is still stable after doping, but its stability is lower than that of undoped Sr2TiO4. Moreover, the valence bands (VBs) of the Sr2In0.125Ti0.875O4 system consist of O 2p and In 4d states, and the mixing of O 2p and In 4d states makes the top VBs shift significantly to high energies, resulting in visible light absorption. The adsorption of visible light is of practical importance for the application of St2 TiO4 as a photocatalyst.
基金Funded by the Natural Science Foundation of Education Committee of Anhui Province(No.KJ2016B003)the National Key Laboratory Fund for Shock Wave and Detonation Physics Research of the China Academy of Engineering Physics(No.9140C671101110C6709)+1 种基金the Defense Industrial Technology Development Program of China(No.B1520110002)the National Basic Research Program of China(No.2010CB731600)
文摘We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2,SrN2 and BaN2.The ground state properties of three alkaline earth diazenides were obtained,and these were in good agreement with previous experimental and theoretical data.By using the quasi-harmonic Debye model,the thermodynamic properties including the debye temperature ΘD,thermal expansion coefficient α,and gruneisen parameter y are successfully obtained in the temperature range from 0 to 100 K and pressure range from 0 to 100 GPa,respectively.The optical properties including dielectric function ε(ω),absorption coefficient α(ω),reflectivity coefficient R(ω),and refractive index n(ω) are also calculated and analyzed.
基金Supported by the National Natural Science Foundation of Shaanxi Province under Grant Nos 2005F39 and 08jk487.
文摘The geometric structure, electronic structure, optical properties and the formation energy of Sb-doped ZnO with the wurtzite structure are investigated using the first-principles ultra-soft pseudo-potential approach of plane wave based upon the density functional theory. The calculated results indicate that the volume of ZnO doped with Sb becomes larger, and the doping system yields the lowest formation energy of Sb on the interstitial site and the oxygen site. Furthermore, Sb dopant first occupies the octahedral oxygen sites of the wurtzite structure. It is found that Sb substituting on oxygen site behaves as a deep acceptor and shows the p-type degenerate semiconductor character. After doping, the electron density difference demonstrates the considerable electron charge density redistribution, which induces the effect of Sb-doped ZnO to increase the charge overlap between atoms. The density of states move towards lower energy and the optical band gap is broadened. Our culated results are in agreement with other experimental results and could make more precise monitoring and controlling possible during the growth of ZnO p-type materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304273,10764005,11164034,11072208,and 11032010)the Yunnan Provincial Natural Science Foundation,China(Grant No.2010DC053)the Scientific Research Foundation for Ph.D.Student of Yunnan Normal University
文摘The electronic structures and magnetic properties of(Mn, N)-codoped Zn O are investigated by using the firstprinciples calculations. In the ferromagnetic state, as N substitutes for the intermediate O atom of the nearest neighboring Mn ions, about 0.5 electron per Mn^2+ion transfers to the N^2-ion, which leads to the high-state Mn ions(close to +2.5)and trivalent N3-ions. In an antiferromagnetic state, one electron transfers to the N2-ion from the downspin Mn2+ion,while no electron transfer occurs for the upspin Mn^2+ion. The(Mn, N)-codoped Zn O system shows ferromagnetism,which is attributed to the hybridization between Mn 3d and N 2p orbitals.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11104203, 11075116, 50972014, 51072024, and 51132002)the Foundation of Introduction of Talent of Tianjin Normal University, China (Grant No. 5RL100)
文摘With first-principles virtual-crystal approximation calculations, we systematically investigate the geometric and elec- tronic structures as well as the phase transition of lead zirconate titanate (PbZr 1-xTixO3 or PZT) as a function of Ti content for the whole range of 0 〈 XTi 〈 1. It can be found that, with the increase of the Ti content, the PbZr1-xTixO3 solid solutions undergo a rhombohedral-to-tetragonal phase transition, which is consistent with the experimental results. In addition, we also show the evolution in geometric and electronic structures of rhombohedral and tetragonal PbZr1-xTixO3 with the increasing content of Ti.
基金Project supported by the National Natural Science Foundation of China(Grant No.61664008)the Special Research Funds for Discipline Construction of High Level University Project,China(Grant No.2015SXTS02)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant Nos.2015R1D1A1A01058991 and 2016R1A6A1A03012877)
文摘We preform first-principle calculations for the geometric, electronic structures and optical properties of SiC nanowires(NWs). The dielectric functions dominated by electronic interband transitions are investigated in terms of the calculated optical response functions. The calculated results reveal that the SiC NW is an indirect band-gap semiconductor material except at a minimum SiC NW(n = 12) diameter, showing that the NW(n = 12) is metallic. Charge density indicates that the Si–C bond of SiC NW has mixed ionic and covalent characteristics: the covalent character is stronger than the ionic character, and shows strong s–p hybrid orbit characteristics. Moreover, the band gap increases as the SiC NW diameter increases. This shows a significant quantum size and surface effect. The optical properties indicate that the obvious dielectric absorption peaks shift towards the high energy, and that there is a blue shift phenomenon in the ultraviolet region. These results show that SiC NW is a promising optoelectronic material for the potential applications in ultraviolet photoelectron devices.
基金Project (16ZB0301) supported by the Research Program of Sichuan Provincial Education Department,China
文摘The effects of solidification rate and excessive Fe on phase formation and magnetocaloric properties of LaFe11.6xSi1.4(x=1.1,1.2)were investigated by XRD,SEM and VSM measurements.The XRD results show that the amount of LaFeSi phase in the as-cast melt-spun ribbons prepared by a copper wheel at a speed of10m/s is less than that in the as-cast arc melting buttons with the same x values.The annealed melt-spun ribbons contain smaller amount of La(Fe,Si)13(1:13)phase than the corresponding annealed arc melting buttons.Although the melt-spun sample has finer crystalline grains ofα-Fe,as indicated by SEM analysis,its crystalline size has not reached nano-scale.Therefore,the magnetic exchange-coupling between1:13phase andα-Fe phase has not been observed in melt-spun ribbons.Further,the maximum negative magnetic entropy change(?SMax)and relative cooling power(RCP)of annealed melt-spun ribbons under a field change of0?2T are weaker than those of the corresponding annealed arc melting buttons.
基金Supported by the National Natural Science Foundation of China(11372073,11072061)Industrial Robot Basic Component Technology Research and Development Platform,Fujian,China(2014H21010011)。
文摘Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were discussed.First,using the Lagrange equation of the second kind,the dynamic model of the system was derived.Second,utilizing singular perturbation theory,a slow subsystem describing the rigid motion and a fast subsystem corresponding to flexible vibration were obtained.For the slow subsystem,when the width of deadzone is uncertain,a dead-zone pre-compensator was designed to eliminate the impact of joint torque output dead-zone,and an integral sliding mode neural network control was proposed.The integral sliding mode term can reduce the steady state error.For the fast subsystem,an optimal linear quadratic regulator(LQR)controller was adopted to damp out the vibration of the flexible links and elastic base simultaneously.Finally,computer simulations show the effectiveness of the compound control method.
基金Supported by the National Natural Science Foundation of China under Grant No 51001081the Introduction of Talent Foundation of Tianjin Normal University under Grant No 5RL075the Science and Technology Development Fund Planning Project of Tianjin Colleges and Universities under Grant No 20081101.
文摘Al-doped ZnO transparent conductive oxide thin films(AZO)are prepared by the magnetron sputtering method.The structural,optical and mechanical properties of the AZO films are studied systematically.The average haze of the AZO sample is increased from 0.34%to 23.6%through wet etching treatment between 380 and 1100nm,and the etched AZO sample has a higher average transmittance of about 82.3%in infrared wavelength range from 760 to 1100nm due to the reduction of absorption by carriers.The average hardness and elastic modulus of the as-deposited AZO films,as determined using the nanoindentation technique,are approximately 10.2 GPa and 130 GPa,respectively.The critical fracture load related to the adhesion strength is about 91 mN.The optimized optical and electrical properties and referable mechanical data indicate that AZO films have good prospects for commercial applications.
基金Project(51005226)supported by the Natural Science Foundation of ChinaProject(2010A610161)supported by the Natural Science Foundation of Ningbo Government,ChinaProject(2010D10015)supported by the International Cooperation Foundation of Ningbo Government,China
文摘The Cr-doped hydrogen-GLC films were prepared by a hybrid magnetron sputtering system composed of a direct current magnetron sputtering (DC-MS) source of carbon and a high power impulse magnetron sputtering (HIPIMS) source of Cr with reactive gas of C2H2.The hydrogen-free GLC and Cr-doped GLC films were also prepared for comparison.The influence of substrate bias on the Cr-doped hydrogen-GLC films was investigated.With the increase of substrate bias from 100 V to 250 V,the re-sputtering of weak bonding sp2 firstly occurred and induced an increased sp3 bonding.However,the following sp3 to sp2 transformation resulted in a decreased sp3 bonding.The change trends of surface roughness and friction coefficient with the increased bias voltages were the same as those of sp3 bond.The lowest surface roughness and lowest friction coefficient corresponded to the highest sp3 with the Cr-GLC-H films at the bias voltage of-100 V.