期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
How Physical Disturbance and Nitrogen Addition Affect the Soil Carbon Decomposition?
1
作者 Muhammad Junaid Nazir Xiuwei Zhang +1 位作者 Daolin Du Feihai Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第9期2087-2097,共11页
The decomposition of soil organic carbon(SOC)plays a critical role in regulating atmospheric CO_(2)concentrations and climate dynamics.However,the mechanisms and factors controlling SOC decomposition are still not ful... The decomposition of soil organic carbon(SOC)plays a critical role in regulating atmospheric CO_(2)concentrations and climate dynamics.However,the mechanisms and factors controlling SOC decomposition are still not fully understood.Here,we conducted a 60 days incubation experiment to test the effects of physical disturbance and nitrogen(N)addition on SOC decomposition.N addition increased the concentration of NO3-by 51%in the soil,but had little effect on the concentration of NH4+.N addition inhibited SOC decomposition,but such an effect differed between disturbed and undisturbed soils.In disturbed and undisturbed soils,application of N decreased SOC decomposition by 37%and 15%,respectively.One possible explanation is that extra N input suppressed microbial N mining and/or increased the stability of soil organic matter by promoting the formation of soil aggregates and incorporating part of the inorganic N into organic matter,and consequently decreased microbial mineralization of soil organic matter.Physical disturbance intensified the inhibition of N on SOC decomposition,likely because physical disturbance allowed the added N to be better exposed to soil microbes and consequently increased the availability of added N.We conclude that physical disturbance and N play important roles in modulating the stability of SOC. 展开更多
关键词 Soil organic matter physical disturbance microbial N mining microbial biomass carbon N availability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部