The decomposition of soil organic carbon(SOC)plays a critical role in regulating atmospheric CO_(2)concentrations and climate dynamics.However,the mechanisms and factors controlling SOC decomposition are still not ful...The decomposition of soil organic carbon(SOC)plays a critical role in regulating atmospheric CO_(2)concentrations and climate dynamics.However,the mechanisms and factors controlling SOC decomposition are still not fully understood.Here,we conducted a 60 days incubation experiment to test the effects of physical disturbance and nitrogen(N)addition on SOC decomposition.N addition increased the concentration of NO3-by 51%in the soil,but had little effect on the concentration of NH4+.N addition inhibited SOC decomposition,but such an effect differed between disturbed and undisturbed soils.In disturbed and undisturbed soils,application of N decreased SOC decomposition by 37%and 15%,respectively.One possible explanation is that extra N input suppressed microbial N mining and/or increased the stability of soil organic matter by promoting the formation of soil aggregates and incorporating part of the inorganic N into organic matter,and consequently decreased microbial mineralization of soil organic matter.Physical disturbance intensified the inhibition of N on SOC decomposition,likely because physical disturbance allowed the added N to be better exposed to soil microbes and consequently increased the availability of added N.We conclude that physical disturbance and N play important roles in modulating the stability of SOC.展开更多
基金the Natural Science Foundation of China(32101385)the Natural Science Foundation of Zhejiang Province(LQ20D030001)the Ten Thousand Talent Program of Zhejiang Province(2018R52016).
文摘The decomposition of soil organic carbon(SOC)plays a critical role in regulating atmospheric CO_(2)concentrations and climate dynamics.However,the mechanisms and factors controlling SOC decomposition are still not fully understood.Here,we conducted a 60 days incubation experiment to test the effects of physical disturbance and nitrogen(N)addition on SOC decomposition.N addition increased the concentration of NO3-by 51%in the soil,but had little effect on the concentration of NH4+.N addition inhibited SOC decomposition,but such an effect differed between disturbed and undisturbed soils.In disturbed and undisturbed soils,application of N decreased SOC decomposition by 37%and 15%,respectively.One possible explanation is that extra N input suppressed microbial N mining and/or increased the stability of soil organic matter by promoting the formation of soil aggregates and incorporating part of the inorganic N into organic matter,and consequently decreased microbial mineralization of soil organic matter.Physical disturbance intensified the inhibition of N on SOC decomposition,likely because physical disturbance allowed the added N to be better exposed to soil microbes and consequently increased the availability of added N.We conclude that physical disturbance and N play important roles in modulating the stability of SOC.