As a new type of NO removal system, NO reduction in N_2-NO plasma was applied to solve the difficulties in the traditional methods, such as higher energy-consumption, larger equipment size and high cost, and so on. Us...As a new type of NO removal system, NO reduction in N_2-NO plasma was applied to solve the difficulties in the traditional methods, such as higher energy-consumption, larger equipment size and high cost, and so on. Using the experimental NO reduction system with single-pair electrode tip discharge structure, the NO reduction characteristics of N_2-NO system were revealed to guide the engineering practice; the results of NO reduction with single-pair electrode tip discharge plasma also have the same instructive meaning to the NO reduction with multi-pair electrode tip discharge plasma. The amount of both active N atom and NO removal rate increased with the distance l_g increasing between the two electrode tips and then dropped when the distance exceeded a certain value. The NO removal rate increased while the voltage between two electrode tips or the resident time of gas flow increased. The distance is a key geometrical variable factor that can determine the intensity of electric field between two electrode tips and the resident time of gas. In this paper, the effects of the dielectric features on NO reduction using dielectric-barrier discharge plasma system were also studied. The results of NO removal rate with different dielectrics such as Al_2O_3, CaO, MgO and glass showed that the electric field intensity is different with different dielectric, because it brings different energy to particles in discharge room and thus it causes different NO removal rate.展开更多
Finite element model updating method based on global information is proposed.Prior investigation upon design space of structural parameters is performed before updating usingstatistic analysis, including parameter scr...Finite element model updating method based on global information is proposed.Prior investigation upon design space of structural parameters is performed before updating usingstatistic analysis, including parameter screening using variance analysis and response surfacefitting using regression analysis. The parameter screening method selects the design parametersconsidering the result of hypothesis testing, which is a kind of global information. Meanwhile, thetraditional updating method considers local sensitivity which only gives the information at solepoint in the design space. Response surface fitting constructs a close-form multinomial whichdescribes the relationship between concerned structural feature and selected updating parameters. Itis an approximation to finite element models(FEM) and used as a substitution in the updatingiterations. The presented updating method can be applied without the restriction of linearassumption. In addition, there is no data exchange between the updating program and the finite-element analysis program in the updating iterations. This makes the method practical inengineering. An aircraft test structure, GARTEUR, is employed to verify the effectiveness of themethod. After updating, the error of modal frequencies is less than 3 percent.展开更多
A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timiz...A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies.展开更多
Non-thermal plasma has been proved to be an effective and competitive technology for removing NO in flue gas since 1970. In this paper, the NO reduction mechanism of the non-thermal plasma reaction in NO/N_2/O_2 syste...Non-thermal plasma has been proved to be an effective and competitive technology for removing NO in flue gas since 1970. In this paper, the NO reduction mechanism of the non-thermal plasma reaction in NO/N_2/O_2 system was investigated using the method of spectral analysis and quantum chemistry. By the establishment of NO reduction and gas discharge plasma emission spectrum measuring system, the NO reduction results, gas discharge emission spectra of NO/N_2/O_2 and pure N_2 were obtained, and then the model of molecular orbit of N_2 either in ground state or its excited state was worked out using the method of molecular orbit Ab initio in Self-Consistent Field(SCF). It was found that NO reduction in NO/N_2 gas discharge plasma was achieved mainly through a series of fast elementary reactions and the N(E6) at excited state was the base for NO reduction.展开更多
An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the p...An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal.展开更多
Using a sub-regional boundary element method, an algorithm for the two-dimensionalelastic bodies with a closed crack loaded by a moving contact elastic body is proposed. Since the extentand status of the contact surfa...Using a sub-regional boundary element method, an algorithm for the two-dimensionalelastic bodies with a closed crack loaded by a moving contact elastic body is proposed. Since the extentand status of the contact surface of two elastic bodies and the crack within the body are all not knownin advance, a double iterative contact algorithm is used. The BEM program for solving the closedcrack problems is developed, some numerical examples are calculated, and the results of the centercrack cases are shown to be in good agreement with the analytical solution in the classical fracturemechanics. In the condition of friction and non-friction, some coupling computational results of theSIF for the closed crack, with different angles and loaded by a moving contact elastic body, are alsoobtained by a numerical computation.展开更多
Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the...Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the flexural buckling of initially curved and twisted thin rods under simultaneous action of axial force and torque. Numerical examples demonstrate that the given formulae are correcte. Some numerical results are compared with existing analytical solutions and data obtained by commercial FE software. The convergence of the proposed curved element is better than that of elements in the commercial FE software. It is shown that good accuracy and convergency are achieved by solving three-dimensional problems.展开更多
An unstructured Reynolds-averaged Navier-Stokes flow solver using the finite volume method is studied. The spatial discretisation is based on the Osher approximate Riemann solvers. A two-equation turbulence model (k-...An unstructured Reynolds-averaged Navier-Stokes flow solver using the finite volume method is studied. The spatial discretisation is based on the Osher approximate Riemann solvers. A two-equation turbulence model (k-ω model) is also developed for hybrid grids to compute the turbulence flow. The turbulence flow past NACA0012 airfoil and the double ellipsolids are computed, and the numerical results show that the above methods are very efficient.展开更多
Various proportional and nonproportional tension-torsion fatigue tests are conducted on aeronautical material-LY12CZ aluminum alloy. The stress and strain states under tension-torsion loading are analyzed by an elasti...Various proportional and nonproportional tension-torsion fatigue tests are conducted on aeronautical material-LY12CZ aluminum alloy. The stress and strain states under tension-torsion loading are analyzed by an elastic-plastic finite element method. The relation between the orientation of crack propagation and each stress and strain component is investigated. Analytical results are compared with experimental data. Results demonstrate that the fatigue cracks tend to be propagated perpendicular to the direction of the largest principle strains under proportional loading, and grow alone one of the maximum shear strain planes under 45° and 90° out-of-phase loadings.展开更多
An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of...An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of generated triangles and the exuviationslike method play a key role, and a single connectivity domain (SCD) without holes is constructed as the initial part of the algorithm. Meanwhile, some examples show that the method can be applied to the triangulation of the trimmed NURBS surface. The result of surface tessellation can be used in many applications such as NC machining, finite element analysis, rendering and mechanism interference detection.展开更多
A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged re...A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged reconstruction and upwind property in the spatial discretization. By using TVD Runge-Kutta time discretization method, the full discrete scheme is obtained and its MmB property is proved. The extension to the two-dimensionalnonlinear hyperbolic conservation law systems is straightforward by using component-wise manner. The main advantage is simple: no Riemann problem is solved, and so field-by-field decomposition is avoided and the complicated computation is reduced. Numerical results of two-dimensional Euler equations of compressible gas dynamics verify the accuracy and robustness of the method.展开更多
A three degree-of-freedom (DOF) ultrasonic motor (USM) with a cylinder-shaped stator and a spherical rotor is introduced, which uses one first order longitudinal and two second order bending nature vibration modes of ...A three degree-of-freedom (DOF) ultrasonic motor (USM) with a cylinder-shaped stator and a spherical rotor is introduced, which uses one first order longitudinal and two second order bending nature vibration modes of the cylinder. Control strategies for the two DOF trajectory following are studied and applied to the prototype USM. Vibration amplitude control is employed for speed regulation. The first trajectory following strategy is a step-by-step interpolation. The second strategy is vector decomposition control. Three pulse width modulation (PWM) methods for the exciting voltage regulation are investigated. These methods are compared and verified by several experiments. The key is to keep the phase differences of the three vibration constants and small exciting voltage distortion while the exciting voltages are changed for simplifing the control process and obtaining good control performance. The vector control method has advantages of small trajectory following error, smooth moving and low noise.展开更多
An experimental investigation on DC flow suppression in a single-stage G-M type pulse tube cooler is made. The influence of DC flow induced by the introduction of the double-inlet on the refrigeration performance of t...An experimental investigation on DC flow suppression in a single-stage G-M type pulse tube cooler is made. The influence of DC flow induced by the introduction of the double-inlet on the refrigeration performance of the cooler is experimentally examined. Two parallelplaced needle valves with an opposite flow direction called as double-valved configuration, instead of conventional single-valved configuration as the double-inlet is used to reduce the DC flow. With the double-valved configuration, the minimum temperatures of 18.4 K and 14.7 K, and the cooling powers of 11.5 W and 29.5 W are also obtained by RW2 and CP4000, respectively.展开更多
The nonlinear stability problem in nonparallel boundary layer flow fortwo-dimensional disturbances was studied by using a newly presented method called ParabolicStability Equations (PSE). A series of new modes generat...The nonlinear stability problem in nonparallel boundary layer flow fortwo-dimensional disturbances was studied by using a newly presented method called ParabolicStability Equations (PSE). A series of new modes generated by the nonlinear interaction ofdisturbance waves were tabu-lately analyzed, and the Mean Flow Distortion (MFD) was numericallygiven. The computational techniques developed, including the higher-order spectral method and themore effective algebraic mapping, increased greatly the numerical accuracy and the rate ofconvergence. With the predictor-corrector approach in the marching procedure, the normalizationcondition was satisfied, and the stability of numerical calculation could be ensured. With differentinitial amplitudes, the nonlinear stability of disturbance wave was studied. The results ofexamples show good agreement with the data given by the DNS using the full Navier-Stokes equations.展开更多
The generation and evolution of turbulent spots in the open-channel flow are simulated numerically by using the Navier-Stokes equations. An effective numerical method with high accuracy and high resolution is develope...The generation and evolution of turbulent spots in the open-channel flow are simulated numerically by using the Navier-Stokes equations. An effective numerical method with high accuracy and high resolution is developed. The fourth-order time splitting methods with high accuracy is proposed. Three-dimensional coupling difference methods are presented for the spatial discretization of the Poisson equation of pressure and Hemholtz equations of velocity, therefore, the fourth-order three-dimensional coupling central difference schemes are constituted. The fourth-order explicit upwind-biased compact difference schemes are designed to overcome the difficulty for the general higher-order central difference scheme which is inadaptable in the boundary neighborhood. The iterative algorithm and overall time marching is used to enhance efficiency. The method is applied in the numerical simulation of turbulent spots at various complex boundary conditions and flow domains. The generation and the developing process of turbulent spots are given, and the basic characteristics of turbulent spots are shown by simulating the evolution of the wall pulse in inclined open-channel flow.展开更多
文摘As a new type of NO removal system, NO reduction in N_2-NO plasma was applied to solve the difficulties in the traditional methods, such as higher energy-consumption, larger equipment size and high cost, and so on. Using the experimental NO reduction system with single-pair electrode tip discharge structure, the NO reduction characteristics of N_2-NO system were revealed to guide the engineering practice; the results of NO reduction with single-pair electrode tip discharge plasma also have the same instructive meaning to the NO reduction with multi-pair electrode tip discharge plasma. The amount of both active N atom and NO removal rate increased with the distance l_g increasing between the two electrode tips and then dropped when the distance exceeded a certain value. The NO removal rate increased while the voltage between two electrode tips or the resident time of gas flow increased. The distance is a key geometrical variable factor that can determine the intensity of electric field between two electrode tips and the resident time of gas. In this paper, the effects of the dielectric features on NO reduction using dielectric-barrier discharge plasma system were also studied. The results of NO removal rate with different dielectrics such as Al_2O_3, CaO, MgO and glass showed that the electric field intensity is different with different dielectric, because it brings different energy to particles in discharge room and thus it causes different NO removal rate.
基金This project is supported by National Natural Science Foundation of China (No. 20010227012)
文摘Finite element model updating method based on global information is proposed.Prior investigation upon design space of structural parameters is performed before updating usingstatistic analysis, including parameter screening using variance analysis and response surfacefitting using regression analysis. The parameter screening method selects the design parametersconsidering the result of hypothesis testing, which is a kind of global information. Meanwhile, thetraditional updating method considers local sensitivity which only gives the information at solepoint in the design space. Response surface fitting constructs a close-form multinomial whichdescribes the relationship between concerned structural feature and selected updating parameters. Itis an approximation to finite element models(FEM) and used as a substitution in the updatingiterations. The presented updating method can be applied without the restriction of linearassumption. In addition, there is no data exchange between the updating program and the finite-element analysis program in the updating iterations. This makes the method practical inengineering. An aircraft test structure, GARTEUR, is employed to verify the effectiveness of themethod. After updating, the error of modal frequencies is less than 3 percent.
文摘A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies.
基金The National Basic Research Program(973) of China(No. G19990222909)
文摘Non-thermal plasma has been proved to be an effective and competitive technology for removing NO in flue gas since 1970. In this paper, the NO reduction mechanism of the non-thermal plasma reaction in NO/N_2/O_2 system was investigated using the method of spectral analysis and quantum chemistry. By the establishment of NO reduction and gas discharge plasma emission spectrum measuring system, the NO reduction results, gas discharge emission spectra of NO/N_2/O_2 and pure N_2 were obtained, and then the model of molecular orbit of N_2 either in ground state or its excited state was worked out using the method of molecular orbit Ab initio in Self-Consistent Field(SCF). It was found that NO reduction in NO/N_2 gas discharge plasma was achieved mainly through a series of fast elementary reactions and the N(E6) at excited state was the base for NO reduction.
文摘An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal.
文摘Using a sub-regional boundary element method, an algorithm for the two-dimensionalelastic bodies with a closed crack loaded by a moving contact elastic body is proposed. Since the extentand status of the contact surface of two elastic bodies and the crack within the body are all not knownin advance, a double iterative contact algorithm is used. The BEM program for solving the closedcrack problems is developed, some numerical examples are calculated, and the results of the centercrack cases are shown to be in good agreement with the analytical solution in the classical fracturemechanics. In the condition of friction and non-friction, some coupling computational results of theSIF for the closed crack, with different angles and loaded by a moving contact elastic body, are alsoobtained by a numerical computation.
文摘Formulae for determining Green strain of an initially curved and twisted rod with circular cross-sections are derived by using the natural (curvilinear) coordinate system. Finite element analyses are performed for the flexural buckling of initially curved and twisted thin rods under simultaneous action of axial force and torque. Numerical examples demonstrate that the given formulae are correcte. Some numerical results are compared with existing analytical solutions and data obtained by commercial FE software. The convergence of the proposed curved element is better than that of elements in the commercial FE software. It is shown that good accuracy and convergency are achieved by solving three-dimensional problems.
文摘An unstructured Reynolds-averaged Navier-Stokes flow solver using the finite volume method is studied. The spatial discretisation is based on the Osher approximate Riemann solvers. A two-equation turbulence model (k-ω model) is also developed for hybrid grids to compute the turbulence flow. The turbulence flow past NACA0012 airfoil and the double ellipsolids are computed, and the numerical results show that the above methods are very efficient.
文摘Various proportional and nonproportional tension-torsion fatigue tests are conducted on aeronautical material-LY12CZ aluminum alloy. The stress and strain states under tension-torsion loading are analyzed by an elastic-plastic finite element method. The relation between the orientation of crack propagation and each stress and strain component is investigated. Analytical results are compared with experimental data. Results demonstrate that the fatigue cracks tend to be propagated perpendicular to the direction of the largest principle strains under proportional loading, and grow alone one of the maximum shear strain planes under 45° and 90° out-of-phase loadings.
文摘An improved algorithm of Delaunay triangulation is proposed by expanding the scope from a convex polygon to an arbitrary polygon area in which holes can be contained in the subdivision procedure. The data structure of generated triangles and the exuviationslike method play a key role, and a single connectivity domain (SCD) without holes is constructed as the initial part of the algorithm. Meanwhile, some examples show that the method can be applied to the triangulation of the trimmed NURBS surface. The result of surface tessellation can be used in many applications such as NC machining, finite element analysis, rendering and mechanism interference detection.
文摘A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged reconstruction and upwind property in the spatial discretization. By using TVD Runge-Kutta time discretization method, the full discrete scheme is obtained and its MmB property is proved. The extension to the two-dimensionalnonlinear hyperbolic conservation law systems is straightforward by using component-wise manner. The main advantage is simple: no Riemann problem is solved, and so field-by-field decomposition is avoided and the complicated computation is reduced. Numerical results of two-dimensional Euler equations of compressible gas dynamics verify the accuracy and robustness of the method.
文摘A three degree-of-freedom (DOF) ultrasonic motor (USM) with a cylinder-shaped stator and a spherical rotor is introduced, which uses one first order longitudinal and two second order bending nature vibration modes of the cylinder. Control strategies for the two DOF trajectory following are studied and applied to the prototype USM. Vibration amplitude control is employed for speed regulation. The first trajectory following strategy is a step-by-step interpolation. The second strategy is vector decomposition control. Three pulse width modulation (PWM) methods for the exciting voltage regulation are investigated. These methods are compared and verified by several experiments. The key is to keep the phase differences of the three vibration constants and small exciting voltage distortion while the exciting voltages are changed for simplifing the control process and obtaining good control performance. The vector control method has advantages of small trajectory following error, smooth moving and low noise.
文摘An experimental investigation on DC flow suppression in a single-stage G-M type pulse tube cooler is made. The influence of DC flow induced by the introduction of the double-inlet on the refrigeration performance of the cooler is experimentally examined. Two parallelplaced needle valves with an opposite flow direction called as double-valved configuration, instead of conventional single-valved configuration as the double-inlet is used to reduce the DC flow. With the double-valved configuration, the minimum temperatures of 18.4 K and 14.7 K, and the cooling powers of 11.5 W and 29.5 W are also obtained by RW2 and CP4000, respectively.
文摘The nonlinear stability problem in nonparallel boundary layer flow fortwo-dimensional disturbances was studied by using a newly presented method called ParabolicStability Equations (PSE). A series of new modes generated by the nonlinear interaction ofdisturbance waves were tabu-lately analyzed, and the Mean Flow Distortion (MFD) was numericallygiven. The computational techniques developed, including the higher-order spectral method and themore effective algebraic mapping, increased greatly the numerical accuracy and the rate ofconvergence. With the predictor-corrector approach in the marching procedure, the normalizationcondition was satisfied, and the stability of numerical calculation could be ensured. With differentinitial amplitudes, the nonlinear stability of disturbance wave was studied. The results ofexamples show good agreement with the data given by the DNS using the full Navier-Stokes equations.
基金Doctoral Foundation of Ministry of Education of China (Grant No:20030287003)
文摘The generation and evolution of turbulent spots in the open-channel flow are simulated numerically by using the Navier-Stokes equations. An effective numerical method with high accuracy and high resolution is developed. The fourth-order time splitting methods with high accuracy is proposed. Three-dimensional coupling difference methods are presented for the spatial discretization of the Poisson equation of pressure and Hemholtz equations of velocity, therefore, the fourth-order three-dimensional coupling central difference schemes are constituted. The fourth-order explicit upwind-biased compact difference schemes are designed to overcome the difficulty for the general higher-order central difference scheme which is inadaptable in the boundary neighborhood. The iterative algorithm and overall time marching is used to enhance efficiency. The method is applied in the numerical simulation of turbulent spots at various complex boundary conditions and flow domains. The generation and the developing process of turbulent spots are given, and the basic characteristics of turbulent spots are shown by simulating the evolution of the wall pulse in inclined open-channel flow.