BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),...BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),weak photogenerated charge separation efficiency(Φ_(Sep)),and low water oxidation efficiency(Φ_(OX)).Herein,we tackle these challenges of the BiVO_(4)photoanodes using systematic engineering,including catalysis engineering,bandgap engineering,and morphology engineering.In particular,we deposit a NiCoO_(x)layer onto the BiVO_(4)photoanode as the oxygen evolution catalyst to enhance theΦ_(OX)of Fe‐g‐C_(3)N_(4)/BiVO_(4)for PEC water oxidation,and incorporate Fe‐doped graphite‐phase C_(3)N_(4)(Fe‐g‐C_(3)N_(4))into the BiVO_(4)photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm,increase the LHE andΦ_(Sep),and further improve the oxygen evolution reaction activity of the NiCoO_(x)catalytic layer.Consequently,the maximum photocurrent density of the as‐prepared NiCoO_(x)/Fe‐g‐C_(3)N_(4)/BiVO_(4)is remarkably boosted from 4.6 to 7.4 mA cm^(−2).This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE,Φ_(Sep),andΦ_(OX)of BiVO_(4)‐based photoanodes,which will substantially benefit the design,preparation,and large‐scale application of next‐generation high‐performance photoanodes.展开更多
In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and e...In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.展开更多
The electrochemical ethanol oxidation reaction(EOR) plays a crucial role in electrochemical hydrogen production and direct ethanol fuel cells, both vital for utilizing renewable energies. Ni-based catalysts are pivota...The electrochemical ethanol oxidation reaction(EOR) plays a crucial role in electrochemical hydrogen production and direct ethanol fuel cells, both vital for utilizing renewable energies. Ni-based catalysts are pivotal in enabling efficient EOR, leading to the formation of acetic acid/acetaldehyde or CO_(2). These can serve as alternative anodic oxidation reactions for oxygen evolution reaction(OER) in water electrolysis or the anodic reaction for direct ethanol fuel cells, respectively. This review explores recent advancements in EOR over Ni-based catalysts. It begins with an overview of EOR performance across various Ni-based catalysts, followed by an examination of the reaction chemistry, mechanism, and active sites.The review then delves into strategies for designing highly active Ni-based EOR catalysts. These strategies include promotion with transition metals, noble metals, nonmetals, and carbon materials, as well as creating amorphous structures, special morphologies, and single-atom catalysts. Additionally, it discusses the concept of self-supporting catalysts using three-dimensional porous substrates. Finally, the review highlights emerging methodologies that warrant further exploration, along with future directions for designing highly active and stable EOR catalysts.展开更多
Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries,but their electrochemical properties are highly related to compositional diversity.Dive...Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries,but their electrochemical properties are highly related to compositional diversity.Diverse composite materials with various phase structures of P3,P2/P3,P2,P2/O3,and P2/P3/O3 were synthesized by manipulating the sodium content and calcination conditions,leading to the construction of a synthetic phase diagram for Na_(x)Ni_(0.25)Mn_(0.75)O_(2)(0.45≤x≤1.1).Then,we compared the electrochemical characteristics and structural evolution during the desodiation/sodiation process of P2,P2/P3,P2/03,and P2/P3/O3-Na_(x)Ni_(0.25)Mn_(0.75)O_(2).Among them,P2/P3-Na0.75Ni0.25Mn0.75O2exhibits the best rate capability of 90.9 mA h g^(-1)at 5 C,with an initial discharge capacity of 142.62 mA h g^(-1)at 0.1 C and a capacity retention rate of 78.25%after 100 cycles at 1 C in the voltage range of 2-4.3 V.The observed superior sodium storage performance of P2/P3 hybrids compared to other composite phases can be attributed to the enhanced Na^(+)transfer dynamic,reduction of the Jahn-teller effect,and improved reaction reversibility induced by the synergistic effect of P2 and P3 phases.The systematic research and exploration of phases in Na_(x)Ni_(0.25)Mn_(0.75)O_(2)provide new sights into high-performance nickel-manganese binary layered oxide for sodium-ion batteries.展开更多
Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing...Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.展开更多
Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material f...Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material for the synthesis of polycarbonate.In this paper,a novel system coupling biomass chemical looping gasification with dimethyl carbonate synthesis with methanol as an intermediate is designed through microscopic mechanism analysis and process optimization.Firstly,reactive force field molecular dynamics simulation is performed to explore the reaction mechanism of biomass chemical looping gasification to determine the optimal gasification temperature range.Secondly,steady-state simulations of the process based on molecular dynamics simulation results are carried out to investigate the effects of temperature,steam to biomass ratio,and oxygen carrier to biomass ratio on the syngas yield and compositions.In addition,the main energy indicators of biomass chemical looping gasification process including lower heating value and cold gas efficiency are analyzed based on the above optimum parameters.Then,two synthesis stages are simulated and optimized with the following results obtained:the optimal temperature and pressure of methanol synthesis stage are 150℃ and 4 MPa;the optimal temperature and pressure of dimethyl carbonate synthesis stage are 140℃ and 0.3 MPa.Finally,the pre-separation-extraction-decantation process separates the mixture of dimethyl carbonate and methanol generated in the synthesis stage with 99.11%purity of dimethyl carbonate.Above results verify the feasibility of producing dimethyl carbonate from the perspective of multi-scale simulation and realize the multi-level utilization of biomass resources.展开更多
Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capaci...Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capacity of liquids organic compounds were developed. Ten elements groups and 32 chemical bond groups were defined by considering the structure of organic compounds. The group contribution values and correlation parameters were regressed by the ridge regression method with the experiment data of 1137 compounds. The heat capacity can be calculated by summating the contributions of the elements and chemical bond groups. The two methods were compared with existing group contribution methods, such as Chickos, Zabransky-Ruzicka, and Zdenka Kolska. The results show that those new estimation methods' overall average relative deviations were 5.81% and 5.71%, which were lower than the other three methods. Those methods were more straightforward in compound splitting.Those new methods can be used to estimate the liquid heat capacity of silicon-containing compounds,which the other three methods cannot estimate. The new methods are more accessible, broader, and more accurate. Therefore, this research has important scientific significance and vast application prospects.展开更多
Adsorptive removal of heavy metal ions from wastewater is very important,and the key is the development of efficient sorbents.In this work,oxygenated alkynyl carbon materials(OACMs)were synthesized via mechanochemical...Adsorptive removal of heavy metal ions from wastewater is very important,and the key is the development of efficient sorbents.In this work,oxygenated alkynyl carbon materials(OACMs)were synthesized via mechanochemical reaction of CaC_(2) and a carbonate(CaCO_(3),Na2CO_(3),or NaHCO_(3))at ambient temperature.The resultant OACMs are micro mesoporous carbon nanomaterials with high specific area(>648 m2 g^(-1)),highly crosslinked texture,and rich alkynyl and oxygenated groups.The OACMs exhibit excellent Hg(Ⅱ)adsorption due to the soft acid-soft base interaction between alkynyl and Hg(Ⅱ),and OACM-3 derived from CaC_(2) and NaHCO_(3) has the saturated Hg(Ⅱ)adsorbance of 483.9 mg g^(-1)along with good selectivity and recyclability.The adsorption is mainly chemisorption following the Langmuir mode.OACM-3 also shows high adsorbance for other heavy metal ions,e.g.256.6 mg g^(-1)for Pb(II),232.4 mg g^(-1)for Zn(II),and 198.7 mg g^(-1)for Cu(II).This work expands the mechnochemical reaction of CaC_(2)with carbonates and possibly other oxyanionic salts,provides a new synthesis approach for functional alkynyl carbon materials with excellent adsorption performance for heavy metal ions,as well as a feasible approach for CO2 resource utilization.展开更多
Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but a...Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier.展开更多
Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficien...Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.展开更多
The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th...The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.展开更多
Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is bei...Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is being widely considered because it permits reactions and separations to be carried out under harsh conditions in terms of both temperature and the chemical environment.This article presents the two most important types of CMRs:those based on dense mixed-conducting membranes for gas separation,and those based on porous ceramic membranes for heterogeneous catalytic processes.New developments in and innovative uses of both types of CMRs over the last decade are presented,along with an overview of our recent work in this field.Membrane reactor design,fabrication,and applications related to energy and environmental areas are highlighted.First,the configuration of membranes and membrane reactors are introduced for each of type of membrane reactor.Next,taking typical catalytic reactions as model systems,the design and optimization of CMRs are illustrated.Finally,challenges and difficulties in the process of industrializing the two types of CMRs are addressed,and a view of the future is outlined.展开更多
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz...The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.展开更多
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
Naphthenic base oil is an important lubricating base oil and very scarce in the global petroleum resources.Herein,a series of alkylated tetralin fluids similar to naphthenic base oils were produced by the alkylation o...Naphthenic base oil is an important lubricating base oil and very scarce in the global petroleum resources.Herein,a series of alkylated tetralin fluids similar to naphthenic base oils were produced by the alkylation of tetralin and a-olefins(n-hexene,n-octene,n-decene)with ionic liquid Et_3NHCl/AlCl_(3)as the catalyst,where the applied raw materials are totally derived from the coal chemical industry.The product composition could be controlled by adjusting the feeding ratio of tetralin and olefin.The synthetic fluids were evaluated as lubricating base oils to reveal the structure-property correlations.Their principal physicochemical and tribological properties depend on the chain-length of a-olefins and the number of alkyl groups onto the aromatic rings.Bis-(octyl-or decyl-)alkyl tetralin exhibited good properties in terms of viscosity,thermo-oxidation stability and pour point,as well as friction-reducing and anti-wear performance,showing great potential for producing naphthenic base synthetic oils from coal-based chemicals.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
In order to satisfy the growing global demand for lithium, selective extraction of lithium from brine has attracted extensive attention. LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the best c...In order to satisfy the growing global demand for lithium, selective extraction of lithium from brine has attracted extensive attention. LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the best choices for commercial applications because of its high selectivity and low energy consumption.However, the low ion diffusion coefficient of lithium manganate limits the further development of electrochemical lithium recovery system. In this work, a novel porous disc-like LiMn_(2)O_(4) was successfully synthesized for the first time via two-step annealing manganese(Ⅱ) precursors. The as-prepared LiMn_(2)O_(4) exhibits porous disc-like morphology, excellent crystallinity, high Li^(+)diffusion coefficient(average 7.6×10^(-9)cm^(2)·s^(-1)), high cycle stability(after 30 uninterrupted extraction and release cycles, the crystal structure hardly changed) and superior rate capacity(93.5% retention from 10-120 mA·g^(-1)). The porous structure and disc-like morphology further promote the contact between lithium ions and electrode materials. Therefore, the assembled electrochemical lithium extraction device with LiMn_(2)O_(4) as positive electrode and silver as negative electrode can realize the rapid and selective extraction of lithium in simulated brine(adsorption capacity of lithium can reach 4.85 mg·g^(-1) in 1 h). The mechanism of disc-like LiMn_(2)O_(4) in electrochemical lithium extraction was proposed based on the analysis of electrochemical characterization and quasi in situ XRD. This novel structure may further promote the practical application of electrochemical lithium extraction from brine.展开更多
Lithium-sulfur batteries(LSBs)are promising as the next generation energy storage options.However,their wide applications have been technically challenged by the diffusion losses of polysulfides and polysulfide shuttl...Lithium-sulfur batteries(LSBs)are promising as the next generation energy storage options.However,their wide applications have been technically challenged by the diffusion losses of polysulfides and polysulfide shuttle effect.In this work,the small organic molecules of 2,5-dichloropyrazine(2,5-DCP)were combined with Co-doped carbon(CoA NAC)flakes to achieve the synergic effect of the covalent and chemical sulfur fixation,so as that the immobilization-conversion of polysulfides in LSBs was greatly enhanced.More specifically,the nucleophilic substitution of the 2,5-DCP additive in the electrolyte with polysulfides formed the CAS bonds.Through the further covalent N-Li bonds between the N atoms in 2,5-DCP and polysulfides,sulfur fixation was achieved in the form of solid organosulfur.Meanwhile,the CoA NAC flakes served as the sulfur cathode to chemically anchor the polysulfides.The interaction mechanism between CoA NAC/2,5-DCP and polysulfides was explored by the density functional theory(DFT)calculations and in-situ infrared spectroscopy.The results showed that the optimal“with 2,5-DCP”sample-assembled LSB exhibited an initial discharge specific capacity of 1244 mA h g^(-1)at 0.2C,and a capacity decay rate of 0.053%per cycle was displayed after 800 cycles at 1C.The good cycling stability with a high sulfur-loaded electrode sample suggested that the synergic effect of covalent/chemical sulfur fixation enabled the enhancement of polysulfides immobilization-conversion in LSBs.展开更多
Activated carbon nanofibers(ACNFs)with small diameter can significantly increase the accessibility of intra pores and accelerate adsorption of molecules from water.In this study,ACNFs were made by blending K_(2)CO_(3)...Activated carbon nanofibers(ACNFs)with small diameter can significantly increase the accessibility of intra pores and accelerate adsorption of molecules from water.In this study,ACNFs were made by blending K_(2)CO_(3)or ZnCl_(2)as the activating agent into the polyacrylonitrile(PAN)in dimethylformamide solution for electrospinning prior to pyrolysis.Bisphenol-A(BPA),an endocrine disruption pollutant,is widely applied in the production of polycarbonate plastics and epoxy resins.Accordingly,BPA is often used as a model contaminant commonly removed via adsorption.Batch adsorption studies were used to evaluate the kinetics and adsorption capacity of the ACNFs.Redlich-Peterson(R-P)and Langmuir models were found to fit the isotherm of BPA adsorption better than Freundlich model,showing the homogeneous nature of the PAN originated ACNFs.The adsorption kinetics was better described by the pseudo second-order model than that by the pseudo first-order model.The fitting by intraparticle diffusion model indicates the adsorption of BPA onto ACNFs is mainly controlled by pore diffusion.High pH value and ionic strength reduced BPA adsorption from aqueous solution.The breakthrough curves studied in two different fixed bed systems(cross flow bed system and packed flow bed system)confirmed the scalability of BPA removal by ACNFs in dynamic adsorption processes.The modified dose-response model predicted well the fixed-bed outlet concentration profiles.展开更多
The reduction of the electrochemical window(EW)of electrolytes plays a significant role in assessing their compatibility with the anode in lithium-ion batteries.However,the accurate calculation of the reduction of EW ...The reduction of the electrochemical window(EW)of electrolytes plays a significant role in assessing their compatibility with the anode in lithium-ion batteries.However,the accurate calculation of the reduction of EW is still challenging due to missing the solvation effects,condensation effects,kinetic factors,and the passivation on anodes.The theoretical prediction of the intrinsic and apparent EW is confirmed by a comprehensive experimental analysis of ethylene carbonatedimethyl carbonate(EC-DMC)electrolytes,combining linear sweep voltammetry(LSV)and gas chromatography-mass spectrometry(GC-MS).The proposed novel kinetic normal distribution theory model can quantitatively explain the current density from LSV and affirm acetaldehyde(MeCHO)as one of the primary reduction products of EC.The solvent effect restricts the intrinsic EW of EC-DMC without lithium salt to 2.6 V(vs.Li^(+)/Li)arising from the Marcus-Gerischer theory and the passivation of MeCHO on the anode broadens the apparent EW to 0.3 V(vs.Li^(+)/Li)arising from the normal distribution of the lowest unoccupied molecular orbital(LUMO)for MeCHO produced by thermal motion.In addition,the passivation on the anode depends intensively on the lithium salt,resulting in more complicated influences on the apparent EW.展开更多
基金Natural Science Foundation of China,Grant/Award Number:22108042Guangzhou(202201020147)。
文摘BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),weak photogenerated charge separation efficiency(Φ_(Sep)),and low water oxidation efficiency(Φ_(OX)).Herein,we tackle these challenges of the BiVO_(4)photoanodes using systematic engineering,including catalysis engineering,bandgap engineering,and morphology engineering.In particular,we deposit a NiCoO_(x)layer onto the BiVO_(4)photoanode as the oxygen evolution catalyst to enhance theΦ_(OX)of Fe‐g‐C_(3)N_(4)/BiVO_(4)for PEC water oxidation,and incorporate Fe‐doped graphite‐phase C_(3)N_(4)(Fe‐g‐C_(3)N_(4))into the BiVO_(4)photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm,increase the LHE andΦ_(Sep),and further improve the oxygen evolution reaction activity of the NiCoO_(x)catalytic layer.Consequently,the maximum photocurrent density of the as‐prepared NiCoO_(x)/Fe‐g‐C_(3)N_(4)/BiVO_(4)is remarkably boosted from 4.6 to 7.4 mA cm^(−2).This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE,Φ_(Sep),andΦ_(OX)of BiVO_(4)‐based photoanodes,which will substantially benefit the design,preparation,and large‐scale application of next‐generation high‐performance photoanodes.
基金supported by the National Natural Science Foundation of China(22178190).
文摘In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.
基金funding from the National Natural Science Foundation of China (No. 22202065)Nanjing Tech University (No. 39801170)State Key Laboratory of MaterialsOriented Chemical Engineering (No. 38901218)。
文摘The electrochemical ethanol oxidation reaction(EOR) plays a crucial role in electrochemical hydrogen production and direct ethanol fuel cells, both vital for utilizing renewable energies. Ni-based catalysts are pivotal in enabling efficient EOR, leading to the formation of acetic acid/acetaldehyde or CO_(2). These can serve as alternative anodic oxidation reactions for oxygen evolution reaction(OER) in water electrolysis or the anodic reaction for direct ethanol fuel cells, respectively. This review explores recent advancements in EOR over Ni-based catalysts. It begins with an overview of EOR performance across various Ni-based catalysts, followed by an examination of the reaction chemistry, mechanism, and active sites.The review then delves into strategies for designing highly active Ni-based EOR catalysts. These strategies include promotion with transition metals, noble metals, nonmetals, and carbon materials, as well as creating amorphous structures, special morphologies, and single-atom catalysts. Additionally, it discusses the concept of self-supporting catalysts using three-dimensional porous substrates. Finally, the review highlights emerging methodologies that warrant further exploration, along with future directions for designing highly active and stable EOR catalysts.
基金supported by project from the National Natural Science Foundation of China(21805018)by the Sichuan Science and Technology Program(2022ZHCG0018,2023NSFSC0117,2023ZHCG0060)+1 种基金the Yibin Science and Technology Program(2022JB005)project funded by the China Postdoctoral Science Foundation(2022M722704)。
文摘Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries,but their electrochemical properties are highly related to compositional diversity.Diverse composite materials with various phase structures of P3,P2/P3,P2,P2/O3,and P2/P3/O3 were synthesized by manipulating the sodium content and calcination conditions,leading to the construction of a synthetic phase diagram for Na_(x)Ni_(0.25)Mn_(0.75)O_(2)(0.45≤x≤1.1).Then,we compared the electrochemical characteristics and structural evolution during the desodiation/sodiation process of P2,P2/P3,P2/03,and P2/P3/O3-Na_(x)Ni_(0.25)Mn_(0.75)O_(2).Among them,P2/P3-Na0.75Ni0.25Mn0.75O2exhibits the best rate capability of 90.9 mA h g^(-1)at 5 C,with an initial discharge capacity of 142.62 mA h g^(-1)at 0.1 C and a capacity retention rate of 78.25%after 100 cycles at 1 C in the voltage range of 2-4.3 V.The observed superior sodium storage performance of P2/P3 hybrids compared to other composite phases can be attributed to the enhanced Na^(+)transfer dynamic,reduction of the Jahn-teller effect,and improved reaction reversibility induced by the synergistic effect of P2 and P3 phases.The systematic research and exploration of phases in Na_(x)Ni_(0.25)Mn_(0.75)O_(2)provide new sights into high-performance nickel-manganese binary layered oxide for sodium-ion batteries.
基金support provided by the National Natural Science Foundation of China (21978143 and 21878164)。
文摘Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.
基金supported by the National Natural Science Foundation of China(22178189)the Natural Science Foundation of Shandong Province(ZR2021MB113)the Postdoctoral Science Foundation of China(2022M711746)。
文摘Biomass chemical looping gasification technology is one of the essential ways to utilize abundant biomass resources.At the same time,dimethyl carbonate can replace phosgene as an environmentfriendly organic material for the synthesis of polycarbonate.In this paper,a novel system coupling biomass chemical looping gasification with dimethyl carbonate synthesis with methanol as an intermediate is designed through microscopic mechanism analysis and process optimization.Firstly,reactive force field molecular dynamics simulation is performed to explore the reaction mechanism of biomass chemical looping gasification to determine the optimal gasification temperature range.Secondly,steady-state simulations of the process based on molecular dynamics simulation results are carried out to investigate the effects of temperature,steam to biomass ratio,and oxygen carrier to biomass ratio on the syngas yield and compositions.In addition,the main energy indicators of biomass chemical looping gasification process including lower heating value and cold gas efficiency are analyzed based on the above optimum parameters.Then,two synthesis stages are simulated and optimized with the following results obtained:the optimal temperature and pressure of methanol synthesis stage are 150℃ and 4 MPa;the optimal temperature and pressure of dimethyl carbonate synthesis stage are 140℃ and 0.3 MPa.Finally,the pre-separation-extraction-decantation process separates the mixture of dimethyl carbonate and methanol generated in the synthesis stage with 99.11%purity of dimethyl carbonate.Above results verify the feasibility of producing dimethyl carbonate from the perspective of multi-scale simulation and realize the multi-level utilization of biomass resources.
基金Financial support from the National Natural Science Foundation of China (22178190)the Major Science and Technology Innovation Project of Shandong Province (2018CXGC1102) is gratefully acknowledged。
文摘Molecular property depends on the property, the number of the elements, and the interaction between elements(such as chemical bonds). Based on the above-mentioned idea, two methods to estimate the isobaric heat capacity of liquids organic compounds were developed. Ten elements groups and 32 chemical bond groups were defined by considering the structure of organic compounds. The group contribution values and correlation parameters were regressed by the ridge regression method with the experiment data of 1137 compounds. The heat capacity can be calculated by summating the contributions of the elements and chemical bond groups. The two methods were compared with existing group contribution methods, such as Chickos, Zabransky-Ruzicka, and Zdenka Kolska. The results show that those new estimation methods' overall average relative deviations were 5.81% and 5.71%, which were lower than the other three methods. Those methods were more straightforward in compound splitting.Those new methods can be used to estimate the liquid heat capacity of silicon-containing compounds,which the other three methods cannot estimate. The new methods are more accessible, broader, and more accurate. Therefore, this research has important scientific significance and vast application prospects.
基金supports from the National Natural Science Foundation of China(No.21776015)the University Scientific Research Project of Anhui Province(No.KJ2018A0065&KJ2020A0245).
文摘Adsorptive removal of heavy metal ions from wastewater is very important,and the key is the development of efficient sorbents.In this work,oxygenated alkynyl carbon materials(OACMs)were synthesized via mechanochemical reaction of CaC_(2) and a carbonate(CaCO_(3),Na2CO_(3),or NaHCO_(3))at ambient temperature.The resultant OACMs are micro mesoporous carbon nanomaterials with high specific area(>648 m2 g^(-1)),highly crosslinked texture,and rich alkynyl and oxygenated groups.The OACMs exhibit excellent Hg(Ⅱ)adsorption due to the soft acid-soft base interaction between alkynyl and Hg(Ⅱ),and OACM-3 derived from CaC_(2) and NaHCO_(3) has the saturated Hg(Ⅱ)adsorbance of 483.9 mg g^(-1)along with good selectivity and recyclability.The adsorption is mainly chemisorption following the Langmuir mode.OACM-3 also shows high adsorbance for other heavy metal ions,e.g.256.6 mg g^(-1)for Pb(II),232.4 mg g^(-1)for Zn(II),and 198.7 mg g^(-1)for Cu(II).This work expands the mechnochemical reaction of CaC_(2)with carbonates and possibly other oxyanionic salts,provides a new synthesis approach for functional alkynyl carbon materials with excellent adsorption performance for heavy metal ions,as well as a feasible approach for CO2 resource utilization.
基金the National Natural Science Foundation of China(21978128,91934302)the State Key Laboratory of Materials-oriented Chemical Engineering(ZK202006)is acknowledged.
文摘Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier.
基金The financial supports from the National Natural Science Foundation of China (22178059, 22208054 and 22072019)Natural Science Foundation of Fujian Province, China (2020J01513)+1 种基金Sinochem Quanzhou Energy Technology Co., Ltd. (ZHQZKJ-19-F-ZS0076)Qingyuan Innovation Laboratory (00121002)
文摘Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.
基金gratefully acknowledge the financial support of the National Natural Science Foundation of China(22108145 and 21978143)the Shandong Province Natural Science Foundation(ZR2020QB189)+1 种基金State Key Laboratory of Heavy Oil Processing(SKLHOP202203008)the Talent Foundation funded by Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering(STHGYX2201).
文摘The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.
基金the National Natural Science Foundation of China(20990222,21006047,21706117,and 21706118)the Natural Science Foundation of Jiangsu(BK20170978 and BK20170970)+1 种基金the State Key Laboratory of Material-Oriented Chemical Engineering(ZK201609)the Innovative Research Team Program by the Ministry of Education of China(IRT17R54).
文摘Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is being widely considered because it permits reactions and separations to be carried out under harsh conditions in terms of both temperature and the chemical environment.This article presents the two most important types of CMRs:those based on dense mixed-conducting membranes for gas separation,and those based on porous ceramic membranes for heterogeneous catalytic processes.New developments in and innovative uses of both types of CMRs over the last decade are presented,along with an overview of our recent work in this field.Membrane reactor design,fabrication,and applications related to energy and environmental areas are highlighted.First,the configuration of membranes and membrane reactors are introduced for each of type of membrane reactor.Next,taking typical catalytic reactions as model systems,the design and optimization of CMRs are illustrated.Finally,challenges and difficulties in the process of industrializing the two types of CMRs are addressed,and a view of the future is outlined.
基金the financial support from the National Key Research and Development Program of China(2022YFB4101302-01)the National Natural Science Foundation of China(22178243)the science and technology innovation project of China Shenhua Coal to Liquid and Chemical Company Limited(MZYHG-22–02).
文摘The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.
基金financially supported by the National Natural Science Foundation of China(U1910202,21978194,22078219 and 22072173)the Fund for Shanxi“1331 Project”the Key Research and Development Program of Shanxi Province(202102090301005)。
文摘Naphthenic base oil is an important lubricating base oil and very scarce in the global petroleum resources.Herein,a series of alkylated tetralin fluids similar to naphthenic base oils were produced by the alkylation of tetralin and a-olefins(n-hexene,n-octene,n-decene)with ionic liquid Et_3NHCl/AlCl_(3)as the catalyst,where the applied raw materials are totally derived from the coal chemical industry.The product composition could be controlled by adjusting the feeding ratio of tetralin and olefin.The synthetic fluids were evaluated as lubricating base oils to reveal the structure-property correlations.Their principal physicochemical and tribological properties depend on the chain-length of a-olefins and the number of alkyl groups onto the aromatic rings.Bis-(octyl-or decyl-)alkyl tetralin exhibited good properties in terms of viscosity,thermo-oxidation stability and pour point,as well as friction-reducing and anti-wear performance,showing great potential for producing naphthenic base synthetic oils from coal-based chemicals.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
基金supported by the National Natural Science Foundation of China (21878133, 21908082, 22178154)the Natural Science Foundation of Jiangsu Province (BK20190854)+1 种基金the China Postdoctoral Science Foundation (2020 M671364, 2021 M701472)the Science & Technology Foundation of Zhenjiang (GY2020027)。
文摘In order to satisfy the growing global demand for lithium, selective extraction of lithium from brine has attracted extensive attention. LiMn_(2)O_(4)-based electrochemical lithium recovery system is one of the best choices for commercial applications because of its high selectivity and low energy consumption.However, the low ion diffusion coefficient of lithium manganate limits the further development of electrochemical lithium recovery system. In this work, a novel porous disc-like LiMn_(2)O_(4) was successfully synthesized for the first time via two-step annealing manganese(Ⅱ) precursors. The as-prepared LiMn_(2)O_(4) exhibits porous disc-like morphology, excellent crystallinity, high Li^(+)diffusion coefficient(average 7.6×10^(-9)cm^(2)·s^(-1)), high cycle stability(after 30 uninterrupted extraction and release cycles, the crystal structure hardly changed) and superior rate capacity(93.5% retention from 10-120 mA·g^(-1)). The porous structure and disc-like morphology further promote the contact between lithium ions and electrode materials. Therefore, the assembled electrochemical lithium extraction device with LiMn_(2)O_(4) as positive electrode and silver as negative electrode can realize the rapid and selective extraction of lithium in simulated brine(adsorption capacity of lithium can reach 4.85 mg·g^(-1) in 1 h). The mechanism of disc-like LiMn_(2)O_(4) in electrochemical lithium extraction was proposed based on the analysis of electrochemical characterization and quasi in situ XRD. This novel structure may further promote the practical application of electrochemical lithium extraction from brine.
基金the financially supports from the National Natural Science Foundation of China(51963004)the Natural Science Foundation of Shandong Province of China(ZR2020MB024)。
文摘Lithium-sulfur batteries(LSBs)are promising as the next generation energy storage options.However,their wide applications have been technically challenged by the diffusion losses of polysulfides and polysulfide shuttle effect.In this work,the small organic molecules of 2,5-dichloropyrazine(2,5-DCP)were combined with Co-doped carbon(CoA NAC)flakes to achieve the synergic effect of the covalent and chemical sulfur fixation,so as that the immobilization-conversion of polysulfides in LSBs was greatly enhanced.More specifically,the nucleophilic substitution of the 2,5-DCP additive in the electrolyte with polysulfides formed the CAS bonds.Through the further covalent N-Li bonds between the N atoms in 2,5-DCP and polysulfides,sulfur fixation was achieved in the form of solid organosulfur.Meanwhile,the CoA NAC flakes served as the sulfur cathode to chemically anchor the polysulfides.The interaction mechanism between CoA NAC/2,5-DCP and polysulfides was explored by the density functional theory(DFT)calculations and in-situ infrared spectroscopy.The results showed that the optimal“with 2,5-DCP”sample-assembled LSB exhibited an initial discharge specific capacity of 1244 mA h g^(-1)at 0.2C,and a capacity decay rate of 0.053%per cycle was displayed after 800 cycles at 1C.The good cycling stability with a high sulfur-loaded electrode sample suggested that the synergic effect of covalent/chemical sulfur fixation enabled the enhancement of polysulfides immobilization-conversion in LSBs.
基金financially supported by the National Science Foundation(1438518)。
文摘Activated carbon nanofibers(ACNFs)with small diameter can significantly increase the accessibility of intra pores and accelerate adsorption of molecules from water.In this study,ACNFs were made by blending K_(2)CO_(3)or ZnCl_(2)as the activating agent into the polyacrylonitrile(PAN)in dimethylformamide solution for electrospinning prior to pyrolysis.Bisphenol-A(BPA),an endocrine disruption pollutant,is widely applied in the production of polycarbonate plastics and epoxy resins.Accordingly,BPA is often used as a model contaminant commonly removed via adsorption.Batch adsorption studies were used to evaluate the kinetics and adsorption capacity of the ACNFs.Redlich-Peterson(R-P)and Langmuir models were found to fit the isotherm of BPA adsorption better than Freundlich model,showing the homogeneous nature of the PAN originated ACNFs.The adsorption kinetics was better described by the pseudo second-order model than that by the pseudo first-order model.The fitting by intraparticle diffusion model indicates the adsorption of BPA onto ACNFs is mainly controlled by pore diffusion.High pH value and ionic strength reduced BPA adsorption from aqueous solution.The breakthrough curves studied in two different fixed bed systems(cross flow bed system and packed flow bed system)confirmed the scalability of BPA removal by ACNFs in dynamic adsorption processes.The modified dose-response model predicted well the fixed-bed outlet concentration profiles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1964205 and 22109005)the National Key Research and Development Program of China(Grant No.2016YFB0100100)Beijing Municipal Science&Technology Commission,China(Grant No.Z191100004719001).
文摘The reduction of the electrochemical window(EW)of electrolytes plays a significant role in assessing their compatibility with the anode in lithium-ion batteries.However,the accurate calculation of the reduction of EW is still challenging due to missing the solvation effects,condensation effects,kinetic factors,and the passivation on anodes.The theoretical prediction of the intrinsic and apparent EW is confirmed by a comprehensive experimental analysis of ethylene carbonatedimethyl carbonate(EC-DMC)electrolytes,combining linear sweep voltammetry(LSV)and gas chromatography-mass spectrometry(GC-MS).The proposed novel kinetic normal distribution theory model can quantitatively explain the current density from LSV and affirm acetaldehyde(MeCHO)as one of the primary reduction products of EC.The solvent effect restricts the intrinsic EW of EC-DMC without lithium salt to 2.6 V(vs.Li^(+)/Li)arising from the Marcus-Gerischer theory and the passivation of MeCHO on the anode broadens the apparent EW to 0.3 V(vs.Li^(+)/Li)arising from the normal distribution of the lowest unoccupied molecular orbital(LUMO)for MeCHO produced by thermal motion.In addition,the passivation on the anode depends intensively on the lithium salt,resulting in more complicated influences on the apparent EW.