Excessive ground surface settlement induced by pit excavation(i.e.braced excavation) can potentially result in damage to the nearby buildings and facilities.In this paper,extensive finite element analyses have been ca...Excessive ground surface settlement induced by pit excavation(i.e.braced excavation) can potentially result in damage to the nearby buildings and facilities.In this paper,extensive finite element analyses have been carried out to evaluate the effects of various structural,soil and geometric properties on the maximum ground surface settlement induced by braced excavation in anisotropic clays.The anisotropic soil properties considered include the plane strain shear strength ratio(i.e.the ratio of the passive undrained shear strength to the active one) and the unloading shear modulus ratio.Other parameters considered include the support system stiffness,the excavation width to excavation depth ratio,and the wall penetration depth to excavation depth ratio.Subsequently,the maximum ground surface settlement of a total of 1479 hypothetical cases were analyzed by various machine learning algorithms including the ensemble learning methods(extreme gradient boosting(XGBoost) and random forest regression(RFR)algorithms).The prediction models developed by the XGBoost and RFR are compared with that of two conventional regression methods,and the predictive accuracy of these models are assessed.This study aims to highlight the technical feasibility and applicability of advanced ensemble learning methods in geotechnical engineering practice.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52078086 and 51778092)Program of Distinguished Young Scholars,Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-jq0087)。
文摘Excessive ground surface settlement induced by pit excavation(i.e.braced excavation) can potentially result in damage to the nearby buildings and facilities.In this paper,extensive finite element analyses have been carried out to evaluate the effects of various structural,soil and geometric properties on the maximum ground surface settlement induced by braced excavation in anisotropic clays.The anisotropic soil properties considered include the plane strain shear strength ratio(i.e.the ratio of the passive undrained shear strength to the active one) and the unloading shear modulus ratio.Other parameters considered include the support system stiffness,the excavation width to excavation depth ratio,and the wall penetration depth to excavation depth ratio.Subsequently,the maximum ground surface settlement of a total of 1479 hypothetical cases were analyzed by various machine learning algorithms including the ensemble learning methods(extreme gradient boosting(XGBoost) and random forest regression(RFR)algorithms).The prediction models developed by the XGBoost and RFR are compared with that of two conventional regression methods,and the predictive accuracy of these models are assessed.This study aims to highlight the technical feasibility and applicability of advanced ensemble learning methods in geotechnical engineering practice.