in situ Fibril formation of polyamide-6 (PA6) in isotropic polypropylene (iPP) was first fabricated using a slit die extrusion and hot stretching process. Then the prepared materials were subjected to injection mo...in situ Fibril formation of polyamide-6 (PA6) in isotropic polypropylene (iPP) was first fabricated using a slit die extrusion and hot stretching process. Then the prepared materials were subjected to injection molding in the temperature range higher than the melting temperature of iPP but lower than that of PA6. The obtained injection-molded samples were characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and two-dimensional wide- angle X-ray scattering (2D-WAXS). Mechanical properties were also investigated. The SEM result shows that the optimum fibril formation could be only achieved in the range of 20 wt% to 30 wt% of PA6 content for the studied system. The fibril morphology changes along the sample thickness in the injection-molded bars. The fibril morphology in the skin layer was better than that in the core layer. 2D-WAXS results showed that the orientation of PP decreased with the increase of PA6 content, which indicated that the orientation of PP was confined by PA6 fibrils. Combined consideration of mechanical properties and morphology indicates that only PP/PA6 composites with 20 wt% of PA6 content show better properties because of the better fibril morphology and PP chain orientation.展开更多
A series of polydimethylsiloxane (PDMS) with varied molecular weights (M_w=3×10~6,1×10~6 and 0.5×10~6) were melt blended with PP to investigate the effect of PDMS molecular weight (MW) on the morphology...A series of polydimethylsiloxane (PDMS) with varied molecular weights (M_w=3×10~6,1×10~6 and 0.5×10~6) were melt blended with PP to investigate the effect of PDMS molecular weight (MW) on the morphology and mechanical properties of PP/PDMS blends.Scanning electron microscopic (SEM) examination showed that the size of PDMS domains was dependent on the MW of PDMS.It was found that the lower the value of PDMS MW,the better dispersion of the PDMS domains in the PP matrix.Tensile and Izod impact tests revealed t...展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.50533050,20490220,20404008,and50373030)This work was subsidized by the Special Funds for Major State Basic Research Projects of China(No.2003CB615600)by the Ministry of Education of China(No.20050610030).
文摘in situ Fibril formation of polyamide-6 (PA6) in isotropic polypropylene (iPP) was first fabricated using a slit die extrusion and hot stretching process. Then the prepared materials were subjected to injection molding in the temperature range higher than the melting temperature of iPP but lower than that of PA6. The obtained injection-molded samples were characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and two-dimensional wide- angle X-ray scattering (2D-WAXS). Mechanical properties were also investigated. The SEM result shows that the optimum fibril formation could be only achieved in the range of 20 wt% to 30 wt% of PA6 content for the studied system. The fibril morphology changes along the sample thickness in the injection-molded bars. The fibril morphology in the skin layer was better than that in the core layer. 2D-WAXS results showed that the orientation of PP decreased with the increase of PA6 content, which indicated that the orientation of PP was confined by PA6 fibrils. Combined consideration of mechanical properties and morphology indicates that only PP/PA6 composites with 20 wt% of PA6 content show better properties because of the better fibril morphology and PP chain orientation.
基金supported by the National Natural Science Foundation of China (Nos.20404008.50533050 and 20490220)the Special Funds for Major State Basic Research Projects of China (No.2003CB615600).
文摘A series of polydimethylsiloxane (PDMS) with varied molecular weights (M_w=3×10~6,1×10~6 and 0.5×10~6) were melt blended with PP to investigate the effect of PDMS molecular weight (MW) on the morphology and mechanical properties of PP/PDMS blends.Scanning electron microscopic (SEM) examination showed that the size of PDMS domains was dependent on the MW of PDMS.It was found that the lower the value of PDMS MW,the better dispersion of the PDMS domains in the PP matrix.Tensile and Izod impact tests revealed t...