Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t...Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.展开更多
The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance(LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin fi...The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance(LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin films have been obtained by means of the spin coating technique and their presence was confirmed by ellipsometry, scanning electron microscopy, and X-ray diffraction testing. The LMRs can be generated in a wide wavelength range and the experimental results agree with the theoretical simulations. Overall, this study highlights the potential of perovskite thin films for the development of novel LMR-based devices that can be used for environmental monitoring, industrial sensing, and gas detection, among other applications.展开更多
As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof pa...As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.展开更多
Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial ...Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task.展开更多
Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t...Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.展开更多
As the field of autonomous driving evolves, real-time semantic segmentation has become a crucial part of computer vision tasks. However, most existing methods use lightweight convolution to reduce the computational ef...As the field of autonomous driving evolves, real-time semantic segmentation has become a crucial part of computer vision tasks. However, most existing methods use lightweight convolution to reduce the computational effort, resulting in lower accuracy. To address this problem, we construct TBANet, a network with an encoder-decoder structure for efficient feature extraction. In the encoder part, the TBA module is designed to extract details and the ETBA module is used to learn semantic representations in a high-dimensional space. In the decoder part, we design a combination of multiple upsampling methods to aggregate features with less computational overhead. We validate the efficiency of TBANet on the Cityscapes dataset. It achieves 75.1% mean Intersection over Union(mIoU) with only 2.07 million parameters and can reach 90.3 Frames Per Second(FPS).展开更多
In the near future, there are expected to have at least billions of devices interconnected with each other. How to connect so many devices becomes a big issue. Machine-to-Machine (M2M) communications serve as the fund...In the near future, there are expected to have at least billions of devices interconnected with each other. How to connect so many devices becomes a big issue. Machine-to-Machine (M2M) communications serve as the fundamental underlying technologies to support such Internet of Things (IoT) applications. The characteristics and services requirements of machine type communication devices (MTCDs) are totally different from the existing ones. Existing network technologies, ranging from personal area networks to wide area networks, are not well suited for M2M communications. Therefore, we first investigate the characteristics and service requirements for MTCDs. Recent advances in both cellular and capillary M2M communications are also discussed. Finally, we list some open issues and future research directions. 展开更多
Cooperative non-orthogonal multiple access(NOMA)is heavily studied in the literature as a solution for 5G and beyond 5G applications.Cooperative NOMA transmits a superimposed version of all users’messages simultaneou...Cooperative non-orthogonal multiple access(NOMA)is heavily studied in the literature as a solution for 5G and beyond 5G applications.Cooperative NOMA transmits a superimposed version of all users’messages simultaneously with the aid of a relay,after that,each user decodes its own message.Accordingly,NOMA is deemed as a spectral efficient technique.Another emerging technique exploits orbital angular momentum(OAM),where OAM is an attractive character of electromagnetic waves.OAM gathered a great deal of attention in recent years(similar to the case with NOMA)due to its ability to enhance electromagnetic spectrum exploitation,hence increasing the achieved transmission throughput.However,OAM-based transmission suffers from wave divergence,especially at high OAM orders.This OAM limitation reduces the transmission distance.The distance can be extended via cooperative relays(part of cooperative NOMA).Relay helps the source to transmit packets to the destination by providing an additional connection to handle the transmission and provide a shorter distance between source and destination.In this paper,we propose employing OAM transmission in the cooperative NOMA network.Simulation experiments show that OAM transmission helps cooperative NOMA in achieving higher throughput compared to the conventional cooperative NOMA.Concurrently,the cooperation part of cooperative NOMA eases the divergence problem of OAM.In addition,the proposed system outperforms the standalone cooperative OAM-based solution.展开更多
Classification of electroencephalogram(EEG)signals for humans can be achieved via artificial intelligence(AI)techniques.Especially,the EEG signals associated with seizure epilepsy can be detected to distinguish betwee...Classification of electroencephalogram(EEG)signals for humans can be achieved via artificial intelligence(AI)techniques.Especially,the EEG signals associated with seizure epilepsy can be detected to distinguish between epileptic and non-epileptic regions.From this perspective,an automated AI technique with a digital processing method can be used to improve these signals.This paper proposes two classifiers:long short-term memory(LSTM)and support vector machine(SVM)for the classification of seizure and non-seizure EEG signals.These classifiers are applied to a public dataset,namely the University of Bonn,which consists of 2 classes–seizure and non-seizure.In addition,a fast Walsh-Hadamard Transform(FWHT)technique is implemented to analyze the EEG signals within the recurrence space of the brain.Thus,Hadamard coefficients of the EEG signals are obtained via the FWHT.Moreover,the FWHT is contributed to generate an efficient derivation of seizure EEG recordings from non-seizure EEG recordings.Also,a k-fold cross-validation technique is applied to validate the performance of the proposed classifiers.The LSTM classifier provides the best performance,with a testing accuracy of 99.00%.The training and testing loss rates for the LSTM are 0.0029 and 0.0602,respectively,while the weighted average precision,recall,and F1-score for the LSTM are 99.00%.The results of the SVM classifier in terms of accuracy,sensitivity,and specificity reached 91%,93.52%,and 91.3%,respectively.The computational time consumed for the training of the LSTM and SVM is 2000 and 2500 s,respectively.The results show that the LSTM classifier provides better performance than SVM in the classification of EEG signals.Eventually,the proposed classifiers provide high classification accuracy compared to previously published classifiers.展开更多
A4-port multiple-input multiple-output(MIMO)antenna exhibiting lowmutual coupling andUWBperformance is developed.The octagonal-shaped four-antenna elements are connected with a 50microstrip feed line that is arranged...A4-port multiple-input multiple-output(MIMO)antenna exhibiting lowmutual coupling andUWBperformance is developed.The octagonal-shaped four-antenna elements are connected with a 50microstrip feed line that is arranged rotationally to achieve the orthogonal polarization for improving the MIMO system performance.The antenna has a wideband impedance bandwidth of 7.5GHz with S11<−10 dB from(103.44%)3.5–11GHz and inter-element isolation higher than 20 dB.Antenna validation is carried out by verifying the simulated and measured results after fabricating the antenna.The results in the form of omnidirectional radiation patterns,peak gain(≥4 dBi),and Envelope Correlation Coefficient(ECC)(≤0.01)are extracted to validate the suggested antenna performance.Aswell,time-domain analysis was investigated to demonstrate the operation of the suggested antenna in wideband applications.Finally,the simulated and experimental outcomes have almost similar tendenciesmaking the antenna suitable for its use in UWBMIMOapplications.展开更多
Black fungus is a rare and dangerous mycology that usually affects the brain and lungs and could be life-threatening in diabetic cases.Recently,some COVID-19 survivors,especially those with co-morbid diseases,have bee...Black fungus is a rare and dangerous mycology that usually affects the brain and lungs and could be life-threatening in diabetic cases.Recently,some COVID-19 survivors,especially those with co-morbid diseases,have been susceptible to black fungus.Therefore,recovered COVID-19 patients should seek medical support when they notice mucormycosis symptoms.This paper proposes a novel ensemble deep-learning model that includes three pre-trained models:reset(50),VGG(19),and Inception.Our approach is medically intuitive and efficient compared to the traditional deep learning models.An image dataset was aggregated from various resources and divided into two classes:a black fungus class and a skin infection class.To the best of our knowledge,our study is the first that is concerned with building black fungus detection models based on deep learning algorithms.The proposed approach can significantly improve the performance of the classification task and increase the generalization ability of such a binary classification task.According to the reported results,it has empirically achieved a sensitivity value of 0.9907,a specificity value of 0.9938,a precision value of 0.9938,and a negative predictive value of 0.9907.展开更多
COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be...COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be projected using different methodologies.Thus,this work aims to gauge the spread of the outbreak severity over time.Furthermore,data analytics and Machine Learning(ML)techniques are employed to gain a broader understanding of virus infections.We have simulated,adjusted,and fitted several statistical time-series forecasting models,linearML models,and nonlinear ML models.Examples of these models are Logistic Regression,Lasso,Ridge,ElasticNet,Huber Regressor,Lasso Lars,Passive Aggressive Regressor,K-Neighbors Regressor,Decision Tree Regressor,Extra Trees Regressor,Support Vector Regressions(SVR),AdaBoost Regressor,Random Forest Regressor,Bagging Regressor,AuoRegression,MovingAverage,Gradient Boosting Regressor,Autoregressive Moving Average(ARMA),Auto-Regressive Integrated Moving Averages(ARIMA),SimpleExpSmoothing,Exponential Smoothing,Holt-Winters,Simple Moving Average,Weighted Moving Average,Croston,and naive Bayes.Furthermore,our suggested methodology includes the development and evaluation of ensemble models built on top of the best-performing statistical and ML-based prediction methods.A third stage in the proposed system is to examine three different implementations to determine which model delivers the best performance.Then,this best method is used for future forecasts,and consequently,we can collect the most accurate and dependable predictions.展开更多
University timetabling problems are a yearly challenging task and are faced repeatedly each semester.The problems are considered nonpolynomial time(NP)and combinatorial optimization problems(COP),which means that they...University timetabling problems are a yearly challenging task and are faced repeatedly each semester.The problems are considered nonpolynomial time(NP)and combinatorial optimization problems(COP),which means that they can be solved through optimization algorithms to produce the aspired optimal timetable.Several techniques have been used to solve university timetabling problems,and most of them use optimization techniques.This paper provides a comprehensive review of the most recent studies dealing with concepts,methodologies,optimization,benchmarks,and open issues of university timetabling problems.The comprehensive review starts by presenting the essence of university timetabling as NP-COP,defining and clarifying the two formed classes of university timetabling:University Course Timetabling and University Examination Timetabling,illustrating the adopted algorithms for solving such a problem,elaborating the university timetabling constraints to be considered achieving the optimal timetable,and explaining how to analyze and measure the performance of the optimization algorithms by demonstrating the commonly used benchmark datasets for the evaluation.It is noted that meta-heuristic methodologies are widely used in the literature.Additionally,recently,multi-objective optimization has been increasingly used in solving such a problem that can identify robust university timetabling solutions.Finally,trends and future directions in university timetabling problems are provided.This paper provides good information for students,researchers,and specialists interested in this area of research.The challenges and possibilities for future research prospects are also explored.展开更多
Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehic...Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting,vehicle detection,vehicle tracking,and classification.Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets,but the process of extracting shadows from moving vehicles in low light of real scenes is difficult.The real scenes of vehicles dataset are generated by self on the Vadodara–Mumbai highway during periods of poor illumination for shadow extraction of moving vehicles to address the above problem.This paper offers a robust shadow extraction of moving vehicles and its elimination for vehicle tracking.The method is distributed into two phases:In the first phase,we extract foreground regions using a mixture of Gaussian model,and then in the second phase,with the help of the Gamma correction,intensity ratio,negative transformation,and a combination of Gaussian filters,we locate and remove the shadow region from the foreground areas.Compared to the outcomes proposed method with outcomes of an existing method,the suggested method achieves an average true negative rate of above 90%,a shadow detection rate SDR(η%),and a shadow discrimination rate SDR(ξ%)of 80%.Hence,the suggested method is more appropriate for moving shadow detection in real scenes.展开更多
Road Side Units(RSUs)are the essential component of vehicular communication for the objective of improving safety and mobility in the road transportation.RSUs are generally deployed at the roadside and more specifical...Road Side Units(RSUs)are the essential component of vehicular communication for the objective of improving safety and mobility in the road transportation.RSUs are generally deployed at the roadside and more specifically at the intersections in order to collect traffic information from the vehicles and disseminate alarms and messages in emergency situations to the neighborhood vehicles cooperating with the network.However,the development of a predominant RSUs placement algorithm for ensuring competent communication in VANETs is a challenging issue due to the hindrance of obstacles like water bodies,trees and buildings.In this paper,Ruppert’s Delaunay Triangulation Refinement Scheme(RDTRS)for optimal RSUs placement is proposed for accurately estimating the optimal number of RSUs that has the possibility of enhancing the area of coverage during data communication.This RDTRS is proposed by considering the maximum number of factors such as global coverage,intersection popularity,vehicle density and obstacles present in the map for optimal RSUs placement,which is considered as the core improvement over the existing RSUs optimal placement strategies.It is contributed for deploying requisite RSUs with essential transmission range for maximal coverage in the convex map such that each position of the map could be effectively covered by at least one RSU in the presence of obstacles.The simulation experiments of the proposed RDTRS are conducted with complex road traffic environments.The results of this proposed RDTRS confirmed its predominance in reducing the end-to-end delay by 21.32%,packet loss by 9.38%with improved packet delivery rate of 10.68%,compared to the benchmarked schemes.展开更多
Nowadays,the security of images or information is very important.This paper introduces a proposed hybrid watermarking and encryption technique for increasing medical image security.First,the secret medical image is en...Nowadays,the security of images or information is very important.This paper introduces a proposed hybrid watermarking and encryption technique for increasing medical image security.First,the secret medical image is encrypted using Advanced Encryption Standard(AES)algorithm.Then,the secret report of the patient is embedded into the encrypted secret medical image with the Least Significant Bit(LSB)watermarking algorithm.After that,the encrypted secret medical image with the secret report is concealed in a cover medical image,using Kekre’s Median Codebook Generation(KMCG)algorithm.Afterwards,the stego-image obtained is split into 16 parts.Finally,it is sent to the receiver.We adopt this strategy to send the secret medical image and report over a network securely.The proposed technique is assessed with different encryption quality metrics including Peak Signal-to-Noise Ratio(PSNR),Correlation Coefficient(Cr),Fea-ture Similarity Index Metric(FSIM),and Structural Similarity Index Metric(SSIM).Histogram estimation is used to confirm the matching between the secret medical image before and after transmission.Simulation results demonstrate that the proposed technique achieves good performance with high quality of the received medical image and clear image details in a very short processing time.展开更多
Arrhythmia has been classified using a variety of methods.Because of the dynamic nature of electrocardiogram(ECG)data,traditional handcrafted approaches are difficult to execute,making the machine learning(ML)solution...Arrhythmia has been classified using a variety of methods.Because of the dynamic nature of electrocardiogram(ECG)data,traditional handcrafted approaches are difficult to execute,making the machine learning(ML)solutions more appealing.Patients with cardiac arrhythmias can benefit from competent monitoring to save their lives.Cardiac arrhythmia classification and prediction have greatly improved in recent years.Arrhythmias are a category of conditions in which the heart's electrical activity is abnormally rapid or sluggish.Every year,it is one of the main reasons of mortality for both men and women,worldwide.For the classification of arrhythmias,this work proposes a novel technique based on optimized feature selection and optimized K-nearest neighbors(KNN)classifier.The proposed method makes advantage of the UCI repository,which has a 279-attribute high-dimensional cardiac arrhythmia dataset.The proposed approach is based on dividing cardiac arrhythmia patients into 16 groups based on the electrocardiography dataset’s features.The purpose is to design an efficient intelligent system employing the dipper throated optimization method to categorize cardiac arrhythmia patients.This method of comprehensive arrhythmia classification outperforms earlier methods presented in the literature.The achieved classification accuracy using the proposed approach is 99.8%.展开更多
It is necessary to confirm the personal data factors and the rules of verification before conducting personal data detection. So that the detection method can be written in the subsequent implementation of the automat...It is necessary to confirm the personal data factors and the rules of verification before conducting personal data detection. So that the detection method can be written in the subsequent implementation of the automatic detection tool. This paper will conduct experiments on common personal data factor rules, including domestic personal identity numbers and credit card numbers with checksums. We use ChatGPT to test the accuracy of identifying personal information like ID card identification numbers or credit card numbers. And then use personal data correlation to reduce the time for personal data identification. Although the number of personal information factors found has decreased, it has had a better effect on the actual manual personal data identification. The result shows that it saves about 45% of the calculation time, and the execution efficiency of the accuracy is also improved with the original method by about 22%, which is about 2.2 times higher than the general method. Therefore, the method proposed in this paper can accurately and effectively find out the leftover personal information in the enterprise. .展开更多
Violence detection is very important for public safety.However,violence detection is not an easy task.Because recognizing violence in surveillance video requires not only spatial information but also sufficient tempor...Violence detection is very important for public safety.However,violence detection is not an easy task.Because recognizing violence in surveillance video requires not only spatial information but also sufficient temporal information.In order to highlight the time information,we propose an efficient deep learning architecture for violence detection based on temporal attention mechanism,which utilizes pre-trained MobileNetV3,convolutional LSTM and temporal attention block Temporal Adaptive(TA).TA block can focus on further refining temporal information from spatial information extracted from backbone.Experimental results show the proposed model is validated on three publicly datasets:Hockey Fight,Movies,and RWF-2000 datasets.展开更多
Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a...Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.展开更多
基金Research Supporting Project Number(RSPD2023R 585),King Saud University,Riyadh,Saudi Arabia.
文摘Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.
基金the partial support to Agencia Estatal de Investigación PID2019-106231RB-I00 research projectUniversidad Rey Juan Carlos with research project “Células fotovoltaicas de tercera generación basadas en semiconductores orgánicos avanzados perovskitas híbridas en estructuras multiunión” (reference M2607)the pre-doctoral research grant of the Public University of Navarra。
文摘The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance(LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin films have been obtained by means of the spin coating technique and their presence was confirmed by ellipsometry, scanning electron microscopy, and X-ray diffraction testing. The LMRs can be generated in a wide wavelength range and the experimental results agree with the theoretical simulations. Overall, this study highlights the potential of perovskite thin films for the development of novel LMR-based devices that can be used for environmental monitoring, industrial sensing, and gas detection, among other applications.
文摘As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.
基金Shenzhen Science and Technology Program,Grant/Award Number:ZDSYS20211021111415025Shenzhen Institute of Artificial Intelligence and Robotics for SocietyYouth Science and Technology Talents Development Project of Guizhou Education Department,Grant/Award Number:QianJiaoheKYZi[2018]459。
文摘Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task.
基金supported by UniversitiKebangsaan Malaysia,under Dana Impak Perdana 2.0.(Ref:DIP–2022–020).
文摘Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.
文摘As the field of autonomous driving evolves, real-time semantic segmentation has become a crucial part of computer vision tasks. However, most existing methods use lightweight convolution to reduce the computational effort, resulting in lower accuracy. To address this problem, we construct TBANet, a network with an encoder-decoder structure for efficient feature extraction. In the encoder part, the TBA module is designed to extract details and the ETBA module is used to learn semantic representations in a high-dimensional space. In the decoder part, we design a combination of multiple upsampling methods to aggregate features with less computational overhead. We validate the efficiency of TBANet on the Cityscapes dataset. It achieves 75.1% mean Intersection over Union(mIoU) with only 2.07 million parameters and can reach 90.3 Frames Per Second(FPS).
文摘In the near future, there are expected to have at least billions of devices interconnected with each other. How to connect so many devices becomes a big issue. Machine-to-Machine (M2M) communications serve as the fundamental underlying technologies to support such Internet of Things (IoT) applications. The characteristics and services requirements of machine type communication devices (MTCDs) are totally different from the existing ones. Existing network technologies, ranging from personal area networks to wide area networks, are not well suited for M2M communications. Therefore, we first investigate the characteristics and service requirements for MTCDs. Recent advances in both cellular and capillary M2M communications are also discussed. Finally, we list some open issues and future research directions.
文摘Cooperative non-orthogonal multiple access(NOMA)is heavily studied in the literature as a solution for 5G and beyond 5G applications.Cooperative NOMA transmits a superimposed version of all users’messages simultaneously with the aid of a relay,after that,each user decodes its own message.Accordingly,NOMA is deemed as a spectral efficient technique.Another emerging technique exploits orbital angular momentum(OAM),where OAM is an attractive character of electromagnetic waves.OAM gathered a great deal of attention in recent years(similar to the case with NOMA)due to its ability to enhance electromagnetic spectrum exploitation,hence increasing the achieved transmission throughput.However,OAM-based transmission suffers from wave divergence,especially at high OAM orders.This OAM limitation reduces the transmission distance.The distance can be extended via cooperative relays(part of cooperative NOMA).Relay helps the source to transmit packets to the destination by providing an additional connection to handle the transmission and provide a shorter distance between source and destination.In this paper,we propose employing OAM transmission in the cooperative NOMA network.Simulation experiments show that OAM transmission helps cooperative NOMA in achieving higher throughput compared to the conventional cooperative NOMA.Concurrently,the cooperation part of cooperative NOMA eases the divergence problem of OAM.In addition,the proposed system outperforms the standalone cooperative OAM-based solution.
基金The authors would like to thank the support of the Taif University Researchers Supporting Project TURSP 2020/34,Taif University,Taif Saudi Arabia for supporting this work.
文摘Classification of electroencephalogram(EEG)signals for humans can be achieved via artificial intelligence(AI)techniques.Especially,the EEG signals associated with seizure epilepsy can be detected to distinguish between epileptic and non-epileptic regions.From this perspective,an automated AI technique with a digital processing method can be used to improve these signals.This paper proposes two classifiers:long short-term memory(LSTM)and support vector machine(SVM)for the classification of seizure and non-seizure EEG signals.These classifiers are applied to a public dataset,namely the University of Bonn,which consists of 2 classes–seizure and non-seizure.In addition,a fast Walsh-Hadamard Transform(FWHT)technique is implemented to analyze the EEG signals within the recurrence space of the brain.Thus,Hadamard coefficients of the EEG signals are obtained via the FWHT.Moreover,the FWHT is contributed to generate an efficient derivation of seizure EEG recordings from non-seizure EEG recordings.Also,a k-fold cross-validation technique is applied to validate the performance of the proposed classifiers.The LSTM classifier provides the best performance,with a testing accuracy of 99.00%.The training and testing loss rates for the LSTM are 0.0029 and 0.0602,respectively,while the weighted average precision,recall,and F1-score for the LSTM are 99.00%.The results of the SVM classifier in terms of accuracy,sensitivity,and specificity reached 91%,93.52%,and 91.3%,respectively.The computational time consumed for the training of the LSTM and SVM is 2000 and 2500 s,respectively.The results show that the LSTM classifier provides better performance than SVM in the classification of EEG signals.Eventually,the proposed classifiers provide high classification accuracy compared to previously published classifiers.
文摘A4-port multiple-input multiple-output(MIMO)antenna exhibiting lowmutual coupling andUWBperformance is developed.The octagonal-shaped four-antenna elements are connected with a 50microstrip feed line that is arranged rotationally to achieve the orthogonal polarization for improving the MIMO system performance.The antenna has a wideband impedance bandwidth of 7.5GHz with S11<−10 dB from(103.44%)3.5–11GHz and inter-element isolation higher than 20 dB.Antenna validation is carried out by verifying the simulated and measured results after fabricating the antenna.The results in the form of omnidirectional radiation patterns,peak gain(≥4 dBi),and Envelope Correlation Coefficient(ECC)(≤0.01)are extracted to validate the suggested antenna performance.Aswell,time-domain analysis was investigated to demonstrate the operation of the suggested antenna in wideband applications.Finally,the simulated and experimental outcomes have almost similar tendenciesmaking the antenna suitable for its use in UWBMIMOapplications.
基金supported by the MSIT (Ministry of Science and ICT),Korea,under the ICAN (ICT Challenge and Advanced Network of HRD)Program (IITP-2023-2020-0-01832)supervised by the IITP (Institute of Information&Communications Technology Planning&Evaluation)and the Soonchunhyang University Research Fund.
文摘Black fungus is a rare and dangerous mycology that usually affects the brain and lungs and could be life-threatening in diabetic cases.Recently,some COVID-19 survivors,especially those with co-morbid diseases,have been susceptible to black fungus.Therefore,recovered COVID-19 patients should seek medical support when they notice mucormycosis symptoms.This paper proposes a novel ensemble deep-learning model that includes three pre-trained models:reset(50),VGG(19),and Inception.Our approach is medically intuitive and efficient compared to the traditional deep learning models.An image dataset was aggregated from various resources and divided into two classes:a black fungus class and a skin infection class.To the best of our knowledge,our study is the first that is concerned with building black fungus detection models based on deep learning algorithms.The proposed approach can significantly improve the performance of the classification task and increase the generalization ability of such a binary classification task.According to the reported results,it has empirically achieved a sensitivity value of 0.9907,a specificity value of 0.9938,a precision value of 0.9938,and a negative predictive value of 0.9907.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number RI-44-0525.
文摘COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be projected using different methodologies.Thus,this work aims to gauge the spread of the outbreak severity over time.Furthermore,data analytics and Machine Learning(ML)techniques are employed to gain a broader understanding of virus infections.We have simulated,adjusted,and fitted several statistical time-series forecasting models,linearML models,and nonlinear ML models.Examples of these models are Logistic Regression,Lasso,Ridge,ElasticNet,Huber Regressor,Lasso Lars,Passive Aggressive Regressor,K-Neighbors Regressor,Decision Tree Regressor,Extra Trees Regressor,Support Vector Regressions(SVR),AdaBoost Regressor,Random Forest Regressor,Bagging Regressor,AuoRegression,MovingAverage,Gradient Boosting Regressor,Autoregressive Moving Average(ARMA),Auto-Regressive Integrated Moving Averages(ARIMA),SimpleExpSmoothing,Exponential Smoothing,Holt-Winters,Simple Moving Average,Weighted Moving Average,Croston,and naive Bayes.Furthermore,our suggested methodology includes the development and evaluation of ensemble models built on top of the best-performing statistical and ML-based prediction methods.A third stage in the proposed system is to examine three different implementations to determine which model delivers the best performance.Then,this best method is used for future forecasts,and consequently,we can collect the most accurate and dependable predictions.
基金This research work was supported by the University Malaysia Sabah,Malaysia.
文摘University timetabling problems are a yearly challenging task and are faced repeatedly each semester.The problems are considered nonpolynomial time(NP)and combinatorial optimization problems(COP),which means that they can be solved through optimization algorithms to produce the aspired optimal timetable.Several techniques have been used to solve university timetabling problems,and most of them use optimization techniques.This paper provides a comprehensive review of the most recent studies dealing with concepts,methodologies,optimization,benchmarks,and open issues of university timetabling problems.The comprehensive review starts by presenting the essence of university timetabling as NP-COP,defining and clarifying the two formed classes of university timetabling:University Course Timetabling and University Examination Timetabling,illustrating the adopted algorithms for solving such a problem,elaborating the university timetabling constraints to be considered achieving the optimal timetable,and explaining how to analyze and measure the performance of the optimization algorithms by demonstrating the commonly used benchmark datasets for the evaluation.It is noted that meta-heuristic methodologies are widely used in the literature.Additionally,recently,multi-objective optimization has been increasingly used in solving such a problem that can identify robust university timetabling solutions.Finally,trends and future directions in university timetabling problems are provided.This paper provides good information for students,researchers,and specialists interested in this area of research.The challenges and possibilities for future research prospects are also explored.
基金funded by Researchers Supporting Project Number(RSP2023R503),King Saud University,Riyadh,Saudi Arabia。
文摘Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting,vehicle detection,vehicle tracking,and classification.Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets,but the process of extracting shadows from moving vehicles in low light of real scenes is difficult.The real scenes of vehicles dataset are generated by self on the Vadodara–Mumbai highway during periods of poor illumination for shadow extraction of moving vehicles to address the above problem.This paper offers a robust shadow extraction of moving vehicles and its elimination for vehicle tracking.The method is distributed into two phases:In the first phase,we extract foreground regions using a mixture of Gaussian model,and then in the second phase,with the help of the Gamma correction,intensity ratio,negative transformation,and a combination of Gaussian filters,we locate and remove the shadow region from the foreground areas.Compared to the outcomes proposed method with outcomes of an existing method,the suggested method achieves an average true negative rate of above 90%,a shadow detection rate SDR(η%),and a shadow discrimination rate SDR(ξ%)of 80%.Hence,the suggested method is more appropriate for moving shadow detection in real scenes.
文摘Road Side Units(RSUs)are the essential component of vehicular communication for the objective of improving safety and mobility in the road transportation.RSUs are generally deployed at the roadside and more specifically at the intersections in order to collect traffic information from the vehicles and disseminate alarms and messages in emergency situations to the neighborhood vehicles cooperating with the network.However,the development of a predominant RSUs placement algorithm for ensuring competent communication in VANETs is a challenging issue due to the hindrance of obstacles like water bodies,trees and buildings.In this paper,Ruppert’s Delaunay Triangulation Refinement Scheme(RDTRS)for optimal RSUs placement is proposed for accurately estimating the optimal number of RSUs that has the possibility of enhancing the area of coverage during data communication.This RDTRS is proposed by considering the maximum number of factors such as global coverage,intersection popularity,vehicle density and obstacles present in the map for optimal RSUs placement,which is considered as the core improvement over the existing RSUs optimal placement strategies.It is contributed for deploying requisite RSUs with essential transmission range for maximal coverage in the convex map such that each position of the map could be effectively covered by at least one RSU in the presence of obstacles.The simulation experiments of the proposed RDTRS are conducted with complex road traffic environments.The results of this proposed RDTRS confirmed its predominance in reducing the end-to-end delay by 21.32%,packet loss by 9.38%with improved packet delivery rate of 10.68%,compared to the benchmarked schemes.
文摘Nowadays,the security of images or information is very important.This paper introduces a proposed hybrid watermarking and encryption technique for increasing medical image security.First,the secret medical image is encrypted using Advanced Encryption Standard(AES)algorithm.Then,the secret report of the patient is embedded into the encrypted secret medical image with the Least Significant Bit(LSB)watermarking algorithm.After that,the encrypted secret medical image with the secret report is concealed in a cover medical image,using Kekre’s Median Codebook Generation(KMCG)algorithm.Afterwards,the stego-image obtained is split into 16 parts.Finally,it is sent to the receiver.We adopt this strategy to send the secret medical image and report over a network securely.The proposed technique is assessed with different encryption quality metrics including Peak Signal-to-Noise Ratio(PSNR),Correlation Coefficient(Cr),Fea-ture Similarity Index Metric(FSIM),and Structural Similarity Index Metric(SSIM).Histogram estimation is used to confirm the matching between the secret medical image before and after transmission.Simulation results demonstrate that the proposed technique achieves good performance with high quality of the received medical image and clear image details in a very short processing time.
文摘Arrhythmia has been classified using a variety of methods.Because of the dynamic nature of electrocardiogram(ECG)data,traditional handcrafted approaches are difficult to execute,making the machine learning(ML)solutions more appealing.Patients with cardiac arrhythmias can benefit from competent monitoring to save their lives.Cardiac arrhythmia classification and prediction have greatly improved in recent years.Arrhythmias are a category of conditions in which the heart's electrical activity is abnormally rapid or sluggish.Every year,it is one of the main reasons of mortality for both men and women,worldwide.For the classification of arrhythmias,this work proposes a novel technique based on optimized feature selection and optimized K-nearest neighbors(KNN)classifier.The proposed method makes advantage of the UCI repository,which has a 279-attribute high-dimensional cardiac arrhythmia dataset.The proposed approach is based on dividing cardiac arrhythmia patients into 16 groups based on the electrocardiography dataset’s features.The purpose is to design an efficient intelligent system employing the dipper throated optimization method to categorize cardiac arrhythmia patients.This method of comprehensive arrhythmia classification outperforms earlier methods presented in the literature.The achieved classification accuracy using the proposed approach is 99.8%.
文摘It is necessary to confirm the personal data factors and the rules of verification before conducting personal data detection. So that the detection method can be written in the subsequent implementation of the automatic detection tool. This paper will conduct experiments on common personal data factor rules, including domestic personal identity numbers and credit card numbers with checksums. We use ChatGPT to test the accuracy of identifying personal information like ID card identification numbers or credit card numbers. And then use personal data correlation to reduce the time for personal data identification. Although the number of personal information factors found has decreased, it has had a better effect on the actual manual personal data identification. The result shows that it saves about 45% of the calculation time, and the execution efficiency of the accuracy is also improved with the original method by about 22%, which is about 2.2 times higher than the general method. Therefore, the method proposed in this paper can accurately and effectively find out the leftover personal information in the enterprise. .
文摘Violence detection is very important for public safety.However,violence detection is not an easy task.Because recognizing violence in surveillance video requires not only spatial information but also sufficient temporal information.In order to highlight the time information,we propose an efficient deep learning architecture for violence detection based on temporal attention mechanism,which utilizes pre-trained MobileNetV3,convolutional LSTM and temporal attention block Temporal Adaptive(TA).TA block can focus on further refining temporal information from spatial information extracted from backbone.Experimental results show the proposed model is validated on three publicly datasets:Hockey Fight,Movies,and RWF-2000 datasets.
基金support by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAK05B01)
文摘Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.