期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice 被引量:1
1
作者 Ayaka Sugeno Wenhui Piao +8 位作者 Miki Yamazaki Kiyofumi Takahashi Koji Arikawa Hiroko Matsunaga Masahito Hosokawa Daisuke Tominaga Yoshio Goshima Haruko Takeyama Toshio Ohshima 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第7期1258-1265,共8页
Recent studies have shown that mutation at Ser522 causes inhibition of collapsin response mediator protein 2(CRMP2) phosphorylation and induces axon elongation and partial recovery of the lost sensorimotor function af... Recent studies have shown that mutation at Ser522 causes inhibition of collapsin response mediator protein 2(CRMP2) phosphorylation and induces axon elongation and partial recovery of the lost sensorimotor function after spinal cord injury(SCI).We aimed to reveal the intracellular mechanism in axotomized neurons in the CRMP2 knock-in(CRMP2KI) mouse model by performing transcriptome analysis in mouse sensorimotor cortex using micro-dissection punching system.Prior to that, we analyzed the structural pathophysiology in axotomized or neighboring neurons after SCI and found that somatic atrophy and dendritic spine reduction in sensorimotor cortex were suppressed in CRMP2KI mice.Further analysis of the transcriptome has aided in the identification of four hemoglobin genes Hba-a1, Hba-a2, Hbb-bs, and Hbb-bt that are significantly upregulated in wild-type mice with concomitant upregulation of genes involved in the oxidative phosphorylation and ribosomal pathways after SCI.However, we observed substantial upregulation in channel activity genes and downregulation of genes regulating vesicles, synaptic function, glial cell differentiation in CRMP2KI mice.Moreover, the transcriptome profile of CRMP2KI mice has been discussed wherein energy metabolism and neuronal pathways were found to be differentially regulated.Our results showed that CRMP2KI mice displayed improved SCI pathophysiology not only via microtubule stabilization in neurons, but also possibly via the whole metabolic system in the central nervous system, response changes in glial cells, and synapses.Taken together, we reveal new insights on SCI pathophysiology and the regenerative mechanism of central nervous system by the inhibition of CRMP2 phosphorylation at Ser522.All these experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee at Waseda University, Japan(2017-A027 approved on March 21, 2017;2018-A003 approved on March 25, 2018;2019-A026 approved on March 25, 2019). 展开更多
关键词 CNS regeneration cortex CRMP2 HEMOGLOBIN metabolic pathway spinal cord injury SPINE TRANSCRIPTOME
下载PDF
Exploration of Activated Pathways for Improving Antifungal Agent FR901469 Productivity in Fungal Species No.11243 Using Comprehensive Pathway Model
2
作者 Itaru Takeda Hiroya Itoh +3 位作者 Makoto Matsui Takashi Shibata Masayuki Machida Sachiyo Aburatani 《Journal of Biosciences and Medicines》 2017年第7期16-31,共16页
Secondary metabolites are important for various industrial applications. The production of secondary metabolites is often improved by the activation of substrate supply pathways for biosynthesis. However, many importa... Secondary metabolites are important for various industrial applications. The production of secondary metabolites is often improved by the activation of substrate supply pathways for biosynthesis. However, many important pathways have remained unclear. In this study, we explored possible pathways related to substrate supply for the biosynthesis of the antifungal agent FR901469 which is a nonribosomal peptide and a fungal secondary metabolite. To clarify the unknown activated pathways, we utilized the Comprehensive Pathway Model (CPM) which was developed in our previous study. We verified that the overexpression of the hypothetical beta-alanine-aminotransferase (BAL-AT), which was included in the explored pathways, improved the FR901469 productivity. The genes encoding the BAL metabolic enzymes are considered to be important for improving the FR901469 productivity. 展开更多
关键词 BIOINFORMATICS Metabolic PATHWAY MODEL FUNGI Secondary METABOLITES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部