Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ...Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.展开更多
As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an ...As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.展开更多
This paper introduces a new enhanced Arabic stemming algorithm for solving the information retrieval problem,especially in medical documents.Our proposed algorithm is a light stemming algorithm for extracting stems an...This paper introduces a new enhanced Arabic stemming algorithm for solving the information retrieval problem,especially in medical documents.Our proposed algorithm is a light stemming algorithm for extracting stems and roots from the input data.One of the main challenges facing the light stemming algorithm is cutting off the input word,to extract the initial segments.When initiating the light stemmer with strong initial segments,the final extracting stems and roots will be more accurate.Therefore,a new enhanced segmentation based on deploying the Direct Acyclic Graph(DAG)model is utilized.In addition to extracting the powerful initial segments,the main two procedures(i.e.,stems and roots extraction),should be also reinforced with more efficient operators to improve the final outputs.To validate the proposed enhanced stemmer,four data sets are used.The achieved stems and roots resulted from our proposed light stemmer are compared with the results obtained from five other well-known Arabic light stemmers using the same data sets.This evaluation process proved that the proposed enhanced stemmer outperformed other comparative stemmers.展开更多
In this paper,we will discuss prediction methods to restrict the spread of the disease by tracking contact individuals via mobile application to individuals infected with the COVID-19 virus.We will track individuals u...In this paper,we will discuss prediction methods to restrict the spread of the disease by tracking contact individuals via mobile application to individuals infected with the COVID-19 virus.We will track individuals using bluetooth technology and then we will save information in the central database when they are in touch.Monitoring cases and avoiding the infected person help with social distance.We also propose that sensors used by people to obtain blood oxygen saturation level and their body temperature will be used besides bluetooth monitoring.The estimation of the frequency of the disease is based on the data entered by the patient and also on the data gathered from the users who entered the program on the state of the disease.In this study,we will also propose the best way to restrict the spread of COVID-19 by using methods of artificial intelligence to predict the disease in Jordan using Tensorflow.展开更多
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU 241085.
文摘Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU241648.
文摘As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.
文摘This paper introduces a new enhanced Arabic stemming algorithm for solving the information retrieval problem,especially in medical documents.Our proposed algorithm is a light stemming algorithm for extracting stems and roots from the input data.One of the main challenges facing the light stemming algorithm is cutting off the input word,to extract the initial segments.When initiating the light stemmer with strong initial segments,the final extracting stems and roots will be more accurate.Therefore,a new enhanced segmentation based on deploying the Direct Acyclic Graph(DAG)model is utilized.In addition to extracting the powerful initial segments,the main two procedures(i.e.,stems and roots extraction),should be also reinforced with more efficient operators to improve the final outputs.To validate the proposed enhanced stemmer,four data sets are used.The achieved stems and roots resulted from our proposed light stemmer are compared with the results obtained from five other well-known Arabic light stemmers using the same data sets.This evaluation process proved that the proposed enhanced stemmer outperformed other comparative stemmers.
文摘In this paper,we will discuss prediction methods to restrict the spread of the disease by tracking contact individuals via mobile application to individuals infected with the COVID-19 virus.We will track individuals using bluetooth technology and then we will save information in the central database when they are in touch.Monitoring cases and avoiding the infected person help with social distance.We also propose that sensors used by people to obtain blood oxygen saturation level and their body temperature will be used besides bluetooth monitoring.The estimation of the frequency of the disease is based on the data entered by the patient and also on the data gathered from the users who entered the program on the state of the disease.In this study,we will also propose the best way to restrict the spread of COVID-19 by using methods of artificial intelligence to predict the disease in Jordan using Tensorflow.