The study of earth masses requires numerical methods that provide the quantification of the safety factor without requiring detrimental assumptions. For that, equilibrium analysis can perform fast computations but req...The study of earth masses requires numerical methods that provide the quantification of the safety factor without requiring detrimental assumptions. For that, equilibrium analysis can perform fast computations but require assumptions that limit its potentiality. Limit analysis does not require detrimental assumptions but are numerically demanding. This work provides a new approach that combines the advantage of both the equilibrium method and the limit analysis. The defined hybrid model allows probabilistic analysis and optimization approaches without the assumption of interslice forces. It is compared with a published case and used to perform probabilistic studies in both a homogeneous and a layered foundation. Analyses show that the shape of the density probability functions is highly relevant when computing the probability of failure, and soil elasticity hardly affects the safety of factor of the earth mass.展开更多
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction in...Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.展开更多
Outdoor fresh air ventilation plays a significant role in reducing airborne transmission of diseases in indoor spaces.School classrooms are considerably challenged during the COVID-19 pandemic because of the increasin...Outdoor fresh air ventilation plays a significant role in reducing airborne transmission of diseases in indoor spaces.School classrooms are considerably challenged during the COVID-19 pandemic because of the increasing need for in-person education,untimely and incompleted vaccinations,high occupancy density,and uncertain ventilation conditions.Many schools started to use CO_(2)meters to indicate air quality,but how to interpret the data remains unclear.Many uncertainties are also involved,including manual readings,student numbers and schedules,uncertain CO_(2)generation rates,and variable indoor and ambient conditions.This study proposed a Bayesian inference approach with sensitivity analysis to understand CO_(2)readings in four primary schools by identifying uncertainties and calibrating key parameters.The outdoor ventilation rate,CO_(2)generation rate,and occupancy level were identified as the top sensitive parameters for indoor CO_(2)levels.The occupancy schedule becomes critical when the CO_(2)data are limited,whereas a 15-min measurement interval could capture dynamic CO_(2)profiles well even without the occupancy information.Hourly CO_(2)recording should be avoided because it failed to capture peak values and overestimated the ventilation rates.For the four primary school rooms,the calibrated ventilation rate with a 95%confidence level for fall condition is 1.96±0.31 ACH for Room#1(165 m^(3)and 20 occupancies)with mechanical ventilation,and for the rest of the naturally ventilated rooms,it is 0.40±0.08 ACH for Room#2(236 m^(3)and 21 occupancies),0.30±0.04 or 0.79±0.06 ACH depending on occupancy schedules for Room#3(236 m^(3)and 19 occupancies),0.40±0.32,0.48±0.37,0.72±0.39 ACH for Room#4(231 m^(3)and 8–9 occupancies)for three consecutive days.展开更多
Physiological modeling is important to evaluate the effects of heat and cold conditions on people’s thermal comfort and health. Experimental studies have found that older people (above 65 year old) undergo age-relate...Physiological modeling is important to evaluate the effects of heat and cold conditions on people’s thermal comfort and health. Experimental studies have found that older people (above 65 year old) undergo age-related weakening changes in their physiology and thermoregulatory activities, which makes them more vulnerable to heat or cold exposure than average aged young adults. However, addressing the age-related changes by modeling has been challenging due to their wide variability among the older population. This study develops a two-node physiological model to predict the thermal response of older people. The model is built on a newly developed two-node model for average-age young adults by accounting for the age-related attenuation of thermoregulation and sensory delays in triggering thermoregulatory actions. A numerical optimization method is developed to compute the model parameter values based on selected benchmark data from the literature. The proposed model is further validated with published measurement data covering large input ranges. The model predictions are in good agreement with the measurements in hot and cold exposure conditions with a discrepancy 0.60 °C for the mean skin temperature and of 0.30 °C for the core temperature. The proposed model can be integrated into building simulation tools to predict heat and cold stress levels and the associated thermal comfort for older people in built environments.展开更多
基金founded by FEDER Funds through Programa Operacional Factores de Competitividade-COMPETEby Portuguese Funds through FCT–Fundacao para a Ciencia e a Tecnologiathe projects PEst –C/MAT/UI0013/2011 and PEst–OE/ECM/UI4047/2011
文摘The study of earth masses requires numerical methods that provide the quantification of the safety factor without requiring detrimental assumptions. For that, equilibrium analysis can perform fast computations but require assumptions that limit its potentiality. Limit analysis does not require detrimental assumptions but are numerically demanding. This work provides a new approach that combines the advantage of both the equilibrium method and the limit analysis. The defined hybrid model allows probabilistic analysis and optimization approaches without the assumption of interslice forces. It is compared with a published case and used to perform probabilistic studies in both a homogeneous and a layered foundation. Analyses show that the shape of the density probability functions is highly relevant when computing the probability of failure, and soil elasticity hardly affects the safety of factor of the earth mass.
文摘Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.
基金The research is supported by the Natural Sciences and Engineering Research Council(NSERC)of Canada through the Discovery Grants Program[#RGPIN-2018-06734]the National Research Council Canada contract[#980615].
文摘Outdoor fresh air ventilation plays a significant role in reducing airborne transmission of diseases in indoor spaces.School classrooms are considerably challenged during the COVID-19 pandemic because of the increasing need for in-person education,untimely and incompleted vaccinations,high occupancy density,and uncertain ventilation conditions.Many schools started to use CO_(2)meters to indicate air quality,but how to interpret the data remains unclear.Many uncertainties are also involved,including manual readings,student numbers and schedules,uncertain CO_(2)generation rates,and variable indoor and ambient conditions.This study proposed a Bayesian inference approach with sensitivity analysis to understand CO_(2)readings in four primary schools by identifying uncertainties and calibrating key parameters.The outdoor ventilation rate,CO_(2)generation rate,and occupancy level were identified as the top sensitive parameters for indoor CO_(2)levels.The occupancy schedule becomes critical when the CO_(2)data are limited,whereas a 15-min measurement interval could capture dynamic CO_(2)profiles well even without the occupancy information.Hourly CO_(2)recording should be avoided because it failed to capture peak values and overestimated the ventilation rates.For the four primary school rooms,the calibrated ventilation rate with a 95%confidence level for fall condition is 1.96±0.31 ACH for Room#1(165 m^(3)and 20 occupancies)with mechanical ventilation,and for the rest of the naturally ventilated rooms,it is 0.40±0.08 ACH for Room#2(236 m^(3)and 21 occupancies),0.30±0.04 or 0.79±0.06 ACH depending on occupancy schedules for Room#3(236 m^(3)and 19 occupancies),0.40±0.32,0.48±0.37,0.72±0.39 ACH for Room#4(231 m^(3)and 8–9 occupancies)for three consecutive days.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Discovery Grants Program[#RGPIN-2018-06734]the Advancing Climate Change Science in Canada Program[#ACCPJ 535986-18]the Construction Research Centre of the National Research Council of Canada through funding from Infrastructure Canada in support of the Pan Canadian Framework on Clean Growth and Climate Change.
文摘Physiological modeling is important to evaluate the effects of heat and cold conditions on people’s thermal comfort and health. Experimental studies have found that older people (above 65 year old) undergo age-related weakening changes in their physiology and thermoregulatory activities, which makes them more vulnerable to heat or cold exposure than average aged young adults. However, addressing the age-related changes by modeling has been challenging due to their wide variability among the older population. This study develops a two-node physiological model to predict the thermal response of older people. The model is built on a newly developed two-node model for average-age young adults by accounting for the age-related attenuation of thermoregulation and sensory delays in triggering thermoregulatory actions. A numerical optimization method is developed to compute the model parameter values based on selected benchmark data from the literature. The proposed model is further validated with published measurement data covering large input ranges. The model predictions are in good agreement with the measurements in hot and cold exposure conditions with a discrepancy 0.60 °C for the mean skin temperature and of 0.30 °C for the core temperature. The proposed model can be integrated into building simulation tools to predict heat and cold stress levels and the associated thermal comfort for older people in built environments.