期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modelling of an SBR WWTP to Enhance the Performance under Hydraulic Shock Load Using STOAT Software
1
作者 Hagar H.Hassan Ahmed M.Ragheb 《Journal of Civil Engineering and Architecture》 2019年第11期704-714,共11页
Modelling is a tool used to simulate the performance of any type of WWTP(wastewater treatment plant)which empowers the user to optimize the response of works by changing influent loads and operational conditions with ... Modelling is a tool used to simulate the performance of any type of WWTP(wastewater treatment plant)which empowers the user to optimize the response of works by changing influent loads and operational conditions with minimum effort and low cost.STOAT(sewage treatment operational analysis over time)software is used to simulate the performance of wastewater treatment plants dynamically.In this paper,a model was built by STOAT software for the Hannoville WWTP allowing to analyze and study the enquiries in a shorter period of time associated with laboratory analysis.Additionally,the model can be used to estimate the response of the system to a diversity of problems.The hydraulic shock load was tested for the entire WWTP consequently allowing the application of strategies that guarantee a better performance by presenting the analysis for the entire plant.Through the aid of STOAT software,a model was built for the whole plant with daily sewage volume entering the treatment plant in a year.The study showed whether the plant can accept a higher flow than that it regularly receives or not.This proved to be successful and the plant has the possibility to accept double the hydraulic shock load,meanwhile,the variations of resulting data were acceptable when compared to the Egyptian environmental requirements. 展开更多
关键词 WWTP STOAT sequence BATCH reactor MODELLING HYDRAULIC shock load
下载PDF
Structural Health Monitoring for Reinforced Concrete Containment Using Inner Electrical Resistivity Method
2
作者 Mostafa Hassaan Mohamed Ihab Elmasry Nabil El Ashkar 《Open Journal of Civil Engineering》 2021年第3期317-341,共25页
Nuclear power plants (NPPs) are considered as the main source for generating electricity nowadays in some countries. The effect of impact of heavy fully loaded aeroplane such as (Boeing 747-200c) causes leakage of the... Nuclear power plants (NPPs) are considered as the main source for generating electricity nowadays in some countries. The effect of impact of heavy fully loaded aeroplane such as (Boeing 747-200c) causes leakage of the radiation through the cracks generated on the external RC containment of NPPs, and this leads to severe damage for humans and cities. In this research paper, external RC containment </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> modeled using ANSYS and hit by Boeing 747-200c which is the heavier aeroplane compared to other jets and causes severe damage for external RC containment. In addition, the impact location for Boeing 747-200c is considered at 30</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">m vertical height. RC containment response was studied after the impact of an aeroplane and a proposed structural health monitoring technique is applied using embedded sensors in order to detect and locate the embedded cracks that is generated due to the effect of impact of heavy aeroplane. It was concluded that RC containment is intact except for the impact region which is damaged. An experimental program was applied on a part of the element in ANSYS which is away from the impact region. Four specimens were cast using heavy weight concrete in laboratory. Three cracked specimens consist of different lengths of vertical cracks which represent different times of impact in order to replicate crack propagation as in ANSYS. The cracks are simulated inside laboratory specimens using failure criteria. The parameters used in detecting the cracks for specimens are the percentage change in electrical resistivity and Decimal Logarithm Resistivity Anisotropy (DLRA) at which they give a good indication for the presence of the crack. 展开更多
关键词 Reinforced Concrete Containment Structural Health Monitoring Electrical Resistivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部