This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste...This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.展开更多
We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reyk...We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reykjafjall-RF), and the Reykjanes oblique rift (RP). WI formed at Tertiary plate boundaries, shifted away, is now cut by the Quaternary intraplate Sn<span style="white-space:nowrap;">æ</span>fellsnes volcanic zone (SVZ), and undergoes occasional earthquakes. By contrast, fractures are being formed and reactivated under intense plate boundary earthquakes in the younger SISZ, RF and RP. Our mapping of stratigraphy, basement fractures, surface ruptures of earthquakes, and leakages of cold and hot water in all areas shows that: 1) In active SISZ, RF and RP, permeable fractures are identical to N-S to NNW dextral, ENE to E-W sinistral, and WNW to NNW sinistral source faults of earthquakes, acting as Riedel shears that accommodate the sinistral motion of the transform zone. The NNE/NE rift-parallel extensional fractures are the least frequent permeable set. Notably, the NW and WNW sets also show dextral motions in RP where they could be splay of each other but belong to a separate developed fracture system, and in the SISZ where the NW set is a splay of a N-S source fault of earthquake. However, permeable fractures in the intraplate WI are only oblique-slip sets striking N-S to NNW dextral, ENE sinistral, and WNW dextral parallel to the SVZ. 2) In each area, the permeable sets fit the fault plane solutions of intraplate or plate boundary earthquakes, as well as the latest stress fields that allow fracture opening for fluid flow. 3) Fractures are more open in the younger SISZ, RF, and RP, with leakages along the fractures and their splays rather than by their tips or in the stepovers. In the older WI where the crust and fractures are filled with secondary minerals, leakages are as much along fractures as where numerous fracture intersections facilitate fluid flow. 4) In case of intersecting fractures, the strike and dip direction of the structures determine which set acts as a carrier or a barrier to the flow. 5) Although Iceland is more known for rifting, these analogues demonstrate that fracture permeability, block compartmentalisation, and fluid flow are controlled by the oblique-slip structures developed under transform mechanism.展开更多
A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Z...A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Zone (WRZ). The age of the oceanic crust in these areas is 3.4 Ma to present. About 20,000 fracture segments on aerial images reflect the dominance of NNE extensional structures in the WRZ. Around 9,000 basement faults, intrusions, secondary fractures, surface ruptures of earthquakes, and leakages were mapped in the outcrops of the HMP and the SISZ. About 23% of these fractures strike NNE, while 77% are dominantly northerly dextral and ENE sinistral, and secondarily E-W, WNW and NW sinistral strike- and oblique-slip structures, forming a Riedel shear pattern typical of a transform zone. Dyke injections into Riedel shears indicate a leaky transform zone. Fractures reactivated, accumulated slip, and re-opened for fluid flow. The ENE faults dip mostly to the southeast and could be the present boundary of the SISZ to the north. A 10 - 30 km wide ENE structural zone hosts a valley to the east, which could be deeper in the west. This ENE zone contains all the earthquakes, dominant ENE rivers, frequent ENE secondary fractures, and is likely the active part of the SISZ. The HMP does not show rotation since 3.4 Ma despite being between two rift segments. Future propagation/recession of the rift segments along their N55°E sections would cause a migration and a clockwise rotation of the SISZ from ENE to E-W. The boundary faults of the SISZ would then be E-W, with unchanged internal Riedel shears, compensating its sinistral motion. Insights into complexities of diverging plate boundaries are critical for resource management in such tectonic contexts.展开更多
文摘This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.
文摘We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reykjafjall-RF), and the Reykjanes oblique rift (RP). WI formed at Tertiary plate boundaries, shifted away, is now cut by the Quaternary intraplate Sn<span style="white-space:nowrap;">æ</span>fellsnes volcanic zone (SVZ), and undergoes occasional earthquakes. By contrast, fractures are being formed and reactivated under intense plate boundary earthquakes in the younger SISZ, RF and RP. Our mapping of stratigraphy, basement fractures, surface ruptures of earthquakes, and leakages of cold and hot water in all areas shows that: 1) In active SISZ, RF and RP, permeable fractures are identical to N-S to NNW dextral, ENE to E-W sinistral, and WNW to NNW sinistral source faults of earthquakes, acting as Riedel shears that accommodate the sinistral motion of the transform zone. The NNE/NE rift-parallel extensional fractures are the least frequent permeable set. Notably, the NW and WNW sets also show dextral motions in RP where they could be splay of each other but belong to a separate developed fracture system, and in the SISZ where the NW set is a splay of a N-S source fault of earthquake. However, permeable fractures in the intraplate WI are only oblique-slip sets striking N-S to NNW dextral, ENE sinistral, and WNW dextral parallel to the SVZ. 2) In each area, the permeable sets fit the fault plane solutions of intraplate or plate boundary earthquakes, as well as the latest stress fields that allow fracture opening for fluid flow. 3) Fractures are more open in the younger SISZ, RF, and RP, with leakages along the fractures and their splays rather than by their tips or in the stepovers. In the older WI where the crust and fractures are filled with secondary minerals, leakages are as much along fractures as where numerous fracture intersections facilitate fluid flow. 4) In case of intersecting fractures, the strike and dip direction of the structures determine which set acts as a carrier or a barrier to the flow. 5) Although Iceland is more known for rifting, these analogues demonstrate that fracture permeability, block compartmentalisation, and fluid flow are controlled by the oblique-slip structures developed under transform mechanism.
文摘A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Zone (WRZ). The age of the oceanic crust in these areas is 3.4 Ma to present. About 20,000 fracture segments on aerial images reflect the dominance of NNE extensional structures in the WRZ. Around 9,000 basement faults, intrusions, secondary fractures, surface ruptures of earthquakes, and leakages were mapped in the outcrops of the HMP and the SISZ. About 23% of these fractures strike NNE, while 77% are dominantly northerly dextral and ENE sinistral, and secondarily E-W, WNW and NW sinistral strike- and oblique-slip structures, forming a Riedel shear pattern typical of a transform zone. Dyke injections into Riedel shears indicate a leaky transform zone. Fractures reactivated, accumulated slip, and re-opened for fluid flow. The ENE faults dip mostly to the southeast and could be the present boundary of the SISZ to the north. A 10 - 30 km wide ENE structural zone hosts a valley to the east, which could be deeper in the west. This ENE zone contains all the earthquakes, dominant ENE rivers, frequent ENE secondary fractures, and is likely the active part of the SISZ. The HMP does not show rotation since 3.4 Ma despite being between two rift segments. Future propagation/recession of the rift segments along their N55°E sections would cause a migration and a clockwise rotation of the SISZ from ENE to E-W. The boundary faults of the SISZ would then be E-W, with unchanged internal Riedel shears, compensating its sinistral motion. Insights into complexities of diverging plate boundaries are critical for resource management in such tectonic contexts.