Thanks to the fast development of micro-electro-mechanical systems(MEMS)technologies,MEMS accelerometers show great potentialities for machine condition monitoring.To overcome the problems of a poor signal to noise ra...Thanks to the fast development of micro-electro-mechanical systems(MEMS)technologies,MEMS accelerometers show great potentialities for machine condition monitoring.To overcome the problems of a poor signal to noise ratio(SNR),complicated modulation,and high costs of vibration measurement and computation using conventional integrated electronics piezoelectric accelerometers,a triaxialMEMS accelerometer-based on-rotor sensing(ORS)technology was developed in this study.With wireless data transmission capability,the ORS unit can be mounted on a rotating rotor to obtain both rotational and transverse dynamics of the rotor with a high SNR.The orthogonal outputs lead to a construction method of analytic signals in the time domain,which is versatile in fault detection and diagnosis of rotating machines.Two case studies based on an induction motor were carried out,which demonstrated that incipient bearing defect and half-broken rotor bar can be effectively diagnosed by the proposed measurement and analysis methods.Comparatively,vibration signals from translational on-casing accelerometers are less capable of detecting such faults.This demonstrates the superiority of the ORS vibrations in fault detection of rotating machines.展开更多
In this review, an attempt was made to introduce the traditional concepts and materials in thermo- electric application and the recent development in search- ing high-performance thermoelectric materials. Due to the u...In this review, an attempt was made to introduce the traditional concepts and materials in thermo- electric application and the recent development in search- ing high-performance thermoelectric materials. Due to the use of nanostructural engineering, thermoelectric materials with a high figure of merit are designed, leading to their blooming application in the energy field. One dimensional nanotubes and nanoribbons, two-dimensional planner structures, nanocomposites, and heterostructures were summarized. In addition, the state-of-the-art theoretical calculation in the prediction of thermoelectric materials was also reviewed, including the molecular dynamics (MD), Boltzmann transport equation, and non-equilibrium Green's function. The combination of experimental fabrication and first-principles prediction significantly promotes the discovery of new promising candidates in the thermoelectric field.展开更多
基金This work was supported by the innovating major training projects of Beijing Institute of Technology,Zhuhai(XKCQ-2019-06)the NSFC-RS joint research project under grants IE181496 in the UK and 11911530177 in China.
文摘Thanks to the fast development of micro-electro-mechanical systems(MEMS)technologies,MEMS accelerometers show great potentialities for machine condition monitoring.To overcome the problems of a poor signal to noise ratio(SNR),complicated modulation,and high costs of vibration measurement and computation using conventional integrated electronics piezoelectric accelerometers,a triaxialMEMS accelerometer-based on-rotor sensing(ORS)technology was developed in this study.With wireless data transmission capability,the ORS unit can be mounted on a rotating rotor to obtain both rotational and transverse dynamics of the rotor with a high SNR.The orthogonal outputs lead to a construction method of analytic signals in the time domain,which is versatile in fault detection and diagnosis of rotating machines.Two case studies based on an induction motor were carried out,which demonstrated that incipient bearing defect and half-broken rotor bar can be effectively diagnosed by the proposed measurement and analysis methods.Comparatively,vibration signals from translational on-casing accelerometers are less capable of detecting such faults.This demonstrates the superiority of the ORS vibrations in fault detection of rotating machines.
文摘In this review, an attempt was made to introduce the traditional concepts and materials in thermo- electric application and the recent development in search- ing high-performance thermoelectric materials. Due to the use of nanostructural engineering, thermoelectric materials with a high figure of merit are designed, leading to their blooming application in the energy field. One dimensional nanotubes and nanoribbons, two-dimensional planner structures, nanocomposites, and heterostructures were summarized. In addition, the state-of-the-art theoretical calculation in the prediction of thermoelectric materials was also reviewed, including the molecular dynamics (MD), Boltzmann transport equation, and non-equilibrium Green's function. The combination of experimental fabrication and first-principles prediction significantly promotes the discovery of new promising candidates in the thermoelectric field.