Antimicrobial resistance(AMR)poses a critical threat to global health and development,with environmental factors—particularly in urban areas—contributing significantly to the spread of antibiotic resistance genes(AR...Antimicrobial resistance(AMR)poses a critical threat to global health and development,with environmental factors—particularly in urban areas—contributing significantly to the spread of antibiotic resistance genes(ARGs).However,most research to date has been conducted at a local level,leaving significant gaps in our understanding of the global status of antibiotic resistance in urban environments.To address this issue,we thoroughly analyzed a total of 86,213 ARGs detected within 4,728 metagenome samples,which were collected by the Meta SUB International Consortium involving diverse urban environments in 60 cities of 27 countries,utilizing a deep-learning based methodology.Our findings demonstrated the strong geographical specificity of urban environmental resistome,and their correlation with various local socioeconomic and medical conditions.We also identified distinctive evolutionary patterns of ARG-related biosynthetic gene clusters(BGCs)across different countries,and discovered that the urban environment represents a rich source of novel antibiotics.Our study provides a comprehensive overview of the global urban environmental resistome,and fills a significant gap in our knowledge of large-scale urban antibiotic resistome analysis.展开更多
基金supported by the National Key Research and Development Program of China(2023YFC2706503)the National Natural Science Foundation of China(32370720)+9 种基金Beihang University&Capital Medical University Plan(BHME-201904)the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE,ECNU,Key Laboratory of MEA,Ministry of Education,ECNU,Key Laboratory of Ecology and Energy Saving Study of Dense Habitat(Tongji University),Ministry of Education-Shanghai Tongji Urban Planning&Design Institute Co.,Ltd Joint Research Project(KY-2022-LH-A03)Shanghai Tongji Urban Planning&Design Institute Co.,Ltd-China Intelligent Urbanization Co-creation Center for High Density Region Research Project(KY-2022-PT-A02)the Irma T.Hirschl and Monique Weill-Caulier Charitable TrustsBert L and N Kuggie Vallee Foundationthe World Quant FoundationThe Pershing Square Sohn Cancer Research Alliancethe National Institutes of Health(R01AI151059)the National Science Foundation(1840275)the Alfred P.Sloan Foundation(G-2015-13964)。
文摘Antimicrobial resistance(AMR)poses a critical threat to global health and development,with environmental factors—particularly in urban areas—contributing significantly to the spread of antibiotic resistance genes(ARGs).However,most research to date has been conducted at a local level,leaving significant gaps in our understanding of the global status of antibiotic resistance in urban environments.To address this issue,we thoroughly analyzed a total of 86,213 ARGs detected within 4,728 metagenome samples,which were collected by the Meta SUB International Consortium involving diverse urban environments in 60 cities of 27 countries,utilizing a deep-learning based methodology.Our findings demonstrated the strong geographical specificity of urban environmental resistome,and their correlation with various local socioeconomic and medical conditions.We also identified distinctive evolutionary patterns of ARG-related biosynthetic gene clusters(BGCs)across different countries,and discovered that the urban environment represents a rich source of novel antibiotics.Our study provides a comprehensive overview of the global urban environmental resistome,and fills a significant gap in our knowledge of large-scale urban antibiotic resistome analysis.