期刊文献+
共找到1,561篇文章
< 1 2 79 >
每页显示 20 50 100
Corrigendum to“GmTOC1b negatively regulates resistance to Soybean mosaic virus”.[Crop J.11(2023)1762-1773]
1
作者 Yuhang Zhang Haiping Du +7 位作者 Tiantian Zhao Chunmei Liao Tu Feng Jun Qin Baohui Liu Fanjiang Kong Zhijun Che Liyu Chen 《The Crop Journal》 SCIE CSCD 2024年第1期320-320,共1页
The authors regret to report a mistake in the text and an associated change necessary to section 3.6 of the paper.On page 1766 in the right-hand column,line 4,the heading of subsection 3.6“GmWRKY40 represses the expr... The authors regret to report a mistake in the text and an associated change necessary to section 3.6 of the paper.On page 1766 in the right-hand column,line 4,the heading of subsection 3.6“GmWRKY40 represses the expression of PR genes”should be changed to“GmWRKY40 promotes the expression of PR genes”.The authors would like to apologize for any inconvenience caused. 展开更多
关键词 COR HEADING RESISTANCE
下载PDF
QTL-allele matrix detected from RTM-GWAS is a powerful tool for studies in genetics, evolution, and breeding by design of crops 被引量:1
2
作者 HE Jian-bo GAI Jun-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第5期1407-1410,共4页
The plant germplasm resources harboring abundant genetic variations are necessary wealth in developing new cultivars adapted to various geographic and seasonal conditions.Unraveling the complex genetic architecture un... The plant germplasm resources harboring abundant genetic variations are necessary wealth in developing new cultivars adapted to various geographic and seasonal conditions.Unraveling the complex genetic architecture underlying phenotypic diversity in germplasm population is essential in studies on genetics,evolution and breeding plans for crop species.Mapping quantitative trait loci(QTLs)using molecular markers provide a basic tool for understanding the inheritance of quantitative traits,while the genomewide association study(GWAS)is a potential approach to detecting the whole-genome QTLs and their corresponding alleles in a germplasm population.The previous GWAS detects QTLs by taking high-density single-nucleotide polymorphism(SNP)markers to identify genotypephenotype associations,and has been extensively used for genetic dissection of quantitative traits in plants(Huang and Han 2014). 展开更多
关键词 breeding GERMPLASM CROPS
下载PDF
Border effects of the main and ratoon crops in the rice ratooning system 被引量:1
3
作者 ZHENG Chang WANG Yue-chao +5 位作者 XU Wen-ba YANG De-sheng YANG Guo-dong YANG Chen HUANG Jian-liang PENG Shao-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期80-91,共12页
The border effect(BE)is widely observed in crop field experiments,and it has been extensively studied in many crops.However,only limited attention has been paid to the BE of ratoon rice.We conducted field experiments ... The border effect(BE)is widely observed in crop field experiments,and it has been extensively studied in many crops.However,only limited attention has been paid to the BE of ratoon rice.We conducted field experiments on ratoon rice in Qichun County,Hubei Province,Central China in 2018 and 2019 to compare the BE in the main and ratoon crops,and to quantify the contribution of BE in the main crop to that in the ratoon crop.The BE of two hybrid varieties was measured for the outermost,second outermost,and third outermost rows in each plot of both crops.To determine the contribution of BE between the two crops,portions of hills in the outermost and second outermost rows were uprooted during the harvest of the main crop so that the second and third outermost rows then became the outermost rows in the ratoon crop.Overall,the BE on grain yield was greater in the main crop than in the ratoon crop.In the main crop,the BE on grain yield was 98.3%in the outermost row,which was explained by the BE on panicles m^(–2),spikelets/panicle,spikelets m^(–2),and total dry weight.In the ratoon crop,the BE on grain yield was reduced to 60.9 and 27.6%with and without the contribution of the BE in the main crop,respectively.Consequently,55.1%of the BE on grain yield in the ratoon crop was contributed from the main crop.High stubble dry weight and non-structural carbohydrate(NSC)accumulation at the harvest of the main crop were responsible for the contribution of BE in the main crop to that in the ratoon crop.Our results suggest that increases in stubble dry weight and NSC accumulation at the harvest of the main crop could be important strategies for developing high-yielding cropping practices in the rice ratooning system. 展开更多
关键词 border effect grain yield non-structural carbohydrate ratoon rice
下载PDF
The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding 被引量:9
4
作者 Xiaoya Shi Shuo Cao +29 位作者 Xu Wang Siyang Huang Yue Wang Zhongjie Liu Wenwen Liu Xiangpeng Leng Yanling Peng Nan Wang Yiwen Wang Zhiyao Ma Xiaodong Xu Fan Zhang Hui Xue Haixia Zhong Yi Wang Kekun Zhang Amandine Velt Komlan Avia Daniela Holtgräwe Jérôme Grimplet JoséTomás Matus Doreen Ware Xinyu Wu Haibo Wang Chonghuai Liu Yuling Fang Camille Rustenholz Zongming Cheng Hua Xiao Yongfeng Zhou 《Horticulture Research》 SCIE CSCD 2023年第5期207-219,共13页
Grapevine is one of the most economically important crops worldwide.However,the previous versions of the grapevine reference genome tipically consist of thousands of fragments with missing centromeres and telomeres,li... Grapevine is one of the most economically important crops worldwide.However,the previous versions of the grapevine reference genome tipically consist of thousands of fragments with missing centromeres and telomeres,limiting the accessibility of the repetitive sequences,the centromeric and telomeric regions,and the study of inheritance of important agronomic traits in these regions.Here,we assembled a telomere-to-telomere(T2T)gap-free reference genome for the cultivar PN40024 using PacBio HiFi long reads.The T2T reference genome(PN_T2T)is 69 Mb longer with 9018 more genes identified than the 12X.v0 version.We annotated 67%repetitive sequences,19 centromeres and 36 telomeres,and incorporated gene annotations of previous versions into the PN_T2T assembly.We detected a total of 377 gene clusters,which showed associations with complex traits,such as aroma and disease resistance.Even though PN40024 derives from nine generations of selfing,we still found nine genomic hotspots of heterozygous sites associated with biological processes,such as the oxidation–reduction process and protein phosphorylation.The fully annotated complete reference genome therefore constitutes an important resource for grapevine genetic studies and breeding programs. 展开更多
关键词 BREEDING CROPS CULTIVAR
下载PDF
Oil Crops:A Potential Source of Biodiesel
5
作者 Zhenhui Yan Guowei Li Shubo Wan 《Engineering》 SCIE EI CAS CSCD 2023年第10期39-41,共3页
1.Introduction Oil crops such as soybeans,sunflower,canola,rapeseed,and peanuts play a vital role in the agricultural economy,second only to food crops in terms of area and yield.Vegetable oil is known for its high en... 1.Introduction Oil crops such as soybeans,sunflower,canola,rapeseed,and peanuts play a vital role in the agricultural economy,second only to food crops in terms of area and yield.Vegetable oil is known for its high energy density,containing approximately 2.25 times more calories per unit mass than carbohydrates or protein.Therefore,vegetable oil is an important source of energy and provides a variety of fatty acids necessary for human health. 展开更多
关键词 CROPS VITAL SOYBEAN
下载PDF
Corrigendum to“Introgression of sharp eyespot resistance from Dasypyrum villosum chromosome 2VL into bread wheat”[Crop J.11(2023)1512–1520]
6
作者 Caiyun Liu Wei Guo +9 位作者 Yang Wang Bisheng Fu Jaroslav Dolezel Ying Liu Wenling Zhai Mahmoud Said István Molnár Katerina Holušová Ruiqi Zhang Jizhong Wu 《The Crop Journal》 SCIE CSCD 2023年第6期1949-1949,共1页
The authors regret to report some missing information in the authorship and associated changes of the paper.On page 1512,the author information reads:“Caiyun Liu a,Wei Guo a,Yang Wang b,Bisheng Fu a,Jaroslav Dolezel ... The authors regret to report some missing information in the authorship and associated changes of the paper.On page 1512,the author information reads:“Caiyun Liu a,Wei Guo a,Yang Wang b,Bisheng Fu a,Jaroslav Dolezel c,Ying Liu a,Wenling Zhai a,Mahmoud Said c,d,István Molnár c,d,e,Katerina Holušovác,Ruiqi Zhang b,*,Jizhong Wu a,f,g,*”.It should be changed to“Caiyun Liu a,1,Wei Guo a,1,Yang Wang b,Bisheng Fu a,Jaroslav Dolezel c,Ying Liu a,Wenling Zhai a,Mahmoud Said c,d,István Molnár c,d,e,Katerina Holušovác,Ruiqi Zhang b,*,Jizhong Wu a,f,g,*”.On page 1512 in the footnote,the following sentence should be added below the corresponding authors’information:1 These authors contributed equally to this work.The correction has been updated above.The authors would like to apologize for any inconvenience caused. 展开更多
关键词 SHARP correction BREAD
下载PDF
The chromosome-level genome of double-petal phenotype jasmine provides insights into the biosynthesis of floral scent 被引量:1
7
作者 Xiangyu Qi Huadi Wang +7 位作者 Shuyun Liu Shuangshuang Chen Jing Feng Huijie Chen Ziyi Qin Quanming Chen Ikram Blilou Yanming Deng 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期259-272,共14页
Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study... Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study,using PacBio,Illumina,10×Genomics and highthroughput chromosome conformation capture(Hi-C)sequencing technologies,a high-quality chromosome-level reference genome for J.sambac was obtained,exploiting a double-petal phenotype cultivar‘Shuangbanmoli’(JSSB).The results showed that the final assembled genome of JSSB is 580.33 Mb in size(contig N50=1.05 Mb;scaffold N50=45.07 Mb)with a total of 39618 predicted protein-coding genes.Our analyses revealed that the JSSB genome has undergone an ancient whole-genome duplication(WGD)event at 91.68 million years ago(Mya).It was estimated that J.sambac diverged from the lineage leading to Olea europaea and Osmanthus fragrans about 28.8 Mya.On the basis of a combination of genomic,transcriptomic and metabolomic analyses,a range of floral scent volatiles and genes were identified involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways.The results provide new insights into the molecular mechanism of its fragrance biosynthesis in jasmine. 展开更多
关键词 Jasminum sambac Aiton OLEACEAE Genome evolution Floral scent Terpene synthase
下载PDF
Identification of key genes regulating the synthesis of quercetin derivatives in Rosa roxburghii through integrated transcriptomics and metabolomics
8
作者 Liyao Su Min Wu +2 位作者 Tian Zhang Yan Zhong Zongming(Max) Cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期876-887,共12页
Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five differ... Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five different stages of R. roxburghii fruit development. Flavonoids and the genes related to their biosynthesis were found to undergo significant changes in abundance across different developmental stages, and numerous quercetin derivatives were identified. We found three gene expression modules that were significantly associated with the abundances of the different flavonoids in R. roxburghii and identified three structural UDP-glycosyltransferase genes directly involved in the synthesis of quercetin derivatives within these modules. In addition, we found that RrBEH4, RrLBD1 and RrPIF8could significantly increase the expression of downstream quercetin derivative biosynthesis genes. Taken together,these results provide new insights into the metabolism of flavonoids and the accumulation of quercetin derivatives in R. roxburghii. 展开更多
关键词 Rosa roxburghii quercetin derivatives weighted gene co-expression network analysis transcription factor transcriptome METABOLOME
下载PDF
Epigenetic control on transcription of vernalization genes and whole-genome gene expression profile induced by vernalization in common wheat
9
作者 Yunzhen Li Liujie Jin +4 位作者 Xinyu Liu Chao He Siteng Bi Sulaiman Saeed Wenhao Yan 《Plant Diversity》 SCIE CAS CSCD 2024年第3期386-394,共9页
Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernaliza... Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernalization response in wheat varieties.In this study,we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties.For this purpose,we determined how major vernalization genes(VRN1,VRN2,and VRN3)respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression.We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties.We found that in winter wheat,but not in spring wheat,VRN1 expression decreases when returned to warm temperature following vernalization.This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3(H3K27me3)and tri-methylation of lysine 4 on histone H3(H3K4me3)at the VRN1 gene.Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes,including those involved in leucine catabolism,cysteine biosynthesis,and flavonoid biosynthesis.These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat. 展开更多
关键词 WHEAT VERNALIZATION VRN1 Histone modification Regulate network
下载PDF
Wetting alternating with partial drying during grain filling increases lysine biosynthesis in inferior rice grain
10
作者 Yi Jiang Wenli Tao +2 位作者 Weiyang Zhang Zhiqin Wang Jianchang Yang 《The Crop Journal》 SCIE CSCD 2024年第1期262-270,共9页
Lysine content is a criterion of the nutritional quality of rice.Understanding the process of lysine biosynthesis in early-flowering superior grain(SG)and late-flowering inferior grain(IG)of rice would advance breedin... Lysine content is a criterion of the nutritional quality of rice.Understanding the process of lysine biosynthesis in early-flowering superior grain(SG)and late-flowering inferior grain(IG)of rice would advance breeding and cultivation to improve nutritional quality.However,little information is available on differences in lysine anabolism between SG and IG and the underlying mechanism,and whether and how irrigation regimes affect lysine anabolism in these grains.A japonica rice cultivar was grown in the field and two irrigation regimes,continuous flooding(CF)and wetting alternating with partial drying(WAPD),were imposed from heading to the mature stage.Lysine content and activities of key enzymes of lysine biosynthesis,and levels of brassinosteroids(BRs)were lower in the IG than in the SG at the early grainfilling stage but higher at middle and late grain-filling stages.WAPD increased activities of these key enzymes,BR levels,and contents of lysine and total amino acids in IG,but not SG relative to CF.Application of 2,4-epibrassinolide to rice panicles in CF during early grain filling reproduced the effects of WAPD,but neither treatment altered the activities of enzymes responsible for lysine catabolism in either SG or IG.WAPD and elevated BR levels during grain filling increased lysine biosynthesis in IG.Improvement in lysine biosynthesis in rice should focus on IG. 展开更多
关键词 BRASSINOSTEROIDS Inferior grain Lysine biosynthesis Rice Wetting alternating with partial drying
下载PDF
Genome-wide identification and characterization of the PbrATG family in Pyrus bretschneideri and functional analysis of PbrATG1a in response to Botryosphaeria dothidea
11
作者 Yun Wang Xun Sun +3 位作者 Zhenwu Zhang Zhihua Xie Kaijie Qi Shaoling Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期327-340,共14页
The pear is an economic fruit that is widely planted around the world and is loved by people for its rich nutritional value. Autophagy is a self-protection mechanism in eukaryotes, and its occurrence often accompanied... The pear is an economic fruit that is widely planted around the world and is loved by people for its rich nutritional value. Autophagy is a self-protection mechanism in eukaryotes, and its occurrence often accompanied by the degradation of damaged substances in cells and the recycling of nutrients. Autophagy is one of the mechanisms through which plants respond to environmental stress and plays an important role in plant development and stress resistance. Functional studies of autophagy-related genes (ATGs) have been performed on a variety of plant species, but little information is available on the ATG family in pear (Pyrus bretschneideri Rehd). Therefore, we analyzed the evolutionary dynamics and performed a genome-wide characterization of the PbrATG gene family. A total of 28 PbrATG members were identified.Phylogenetic analysis showed that PbrATGs were more closely related to ATGs of European pear and apple. Evolutionary analysis revealed that whole-genome duplication (WGD) and dispersed duplication events were the main driving forces of PbrATG family expansion.Expression analysis of different pear tissues showed that all the genes were expressed in different pear tissues, and different PbrATGs are expressed at different times and in different locations. Moreover, all PbrATGs also responded to different abiotic stresses, especially salt and drought stress, which elicited the highest expression levels. Pear seedlings were subsequently infected with Botryosphaeria dothidea (B.dothidea). The results showed that different PbrATGs had different expression patterns at different infection stages. According to the gene expression data, PbrATG1a was selected as a key autophagy gene for further analysis. Silencing of PbrATG1a reduced the resistance of pear to B. dothidea, which resulted in increased lesions, reactive oxygen species (ROS) contents, antioxidant enzyme activity, and gene expression levels in the silenced pear seedlings after B. dothidea inoculation. In this study, a comprehensive bioinformatic analysis of ATGs was conducted, and the functions of PbrATGs in pear development and in response to stress were elucidated, which laid a foundation for further study of the molecular mechanism of autophagy and a new strategy for pear resistance breeding. 展开更多
关键词 AUTOPHAGY PEAR PbrATGs Abiotic stress Botryosphaeria dothidea PbrATG1a
下载PDF
CmMYB3-like negatively regulates anthocyanin biosynthesis and flower color formation during the post-flowering stage in Chrysanthemum morifolium
12
作者 Lijie Zhou Shenhui Liu +6 位作者 Yiguang Wang Yuxi Wang Aiping Song Jiafu Jiang Sumei Chen Zhiyong Guan Fadi Chen 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期194-204,共11页
Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulati... Color fading caused by a decrease in anthocyanin accumulation during the post-flowering stage significantly affects postharvest quality of chrysanthemum.However,the underlying mechanism by which anthocyanin accumulation decreases during the post-flowering stage still unclear,which greatly restricts design of molecular breeding in chrysanthemum.Here,a chrysanthemum SG7 R2R3 MYB transcription factor(TF),CmMYB3-like,was identified to have a function in regulating anthocyanin biosynthesis during the post-flowering stage.Quantitative real time PCR(qRT-PCR)assays showed that the expression of CmMYB3-like was gradually downregulated when anthocyanin content increased during the flowering stage and was significantly upregulated during the post-flowering stage.Genetic transformation of chrysanthemum and dual-luciferase assays in N.benthamiana leaves showed that CmMYB3-like suppressed anthocyanin accumulation by inhibiting the transcription of CmCHS and CmANS directly and that of CmF3H indirectly.However,overexpression or suppression of CmMYB3-like did not affect the biosynthesis of flavones or flavonols.Genetic transformation of chrysanthemum revealed that the overexpression of CmMYB3-like inhibited anthocyanin accumulation,but its suppression prevented the decrease in anthocyanin accumulation during the post-flowering stage.Our results revealed a crucial role of CmMYB3-like in regulating the color of petals during the post-flowering stage and provided a target gene for molecular design breeding to improve the postharvest quality of chrysanthemum. 展开更多
关键词 Post-flowering stage Color fading Anthocyanins CmMYB3-like CHRYSANTHEMUM Molecular breeding
下载PDF
Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice(Oryza sativa L.)by regulating starch metabolism
13
作者 Yuguang Zang Gaozhao Wu +10 位作者 Qiangqiang Li Yiwen Xu Mingming Xue Xingyu Chen Haiyan Wei Weiyang Zhang Hao Zhang Lijun Liu Zhiqin Wang Junfei Gu Jianchang Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1507-1522,共16页
Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to st... Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism. 展开更多
关键词 rice(Oryza sativa L.) non-structural carbohydrates(NsCs) enzymatic activity grain illing starch granules vascular bundle
下载PDF
E3 ubiquitin ligase PbrATL18 is a positive factor in pear resistance to drought and Colletotrichum fructicola infection
14
作者 Likun Lin Qiming Chen +4 位作者 Kaili Yuan Caihua Xing Qinghai Qiao Xiaosan Huang Shaoling Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期698-712,共15页
The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been ide... The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been identified in other species,such as Arabidopsis,Oryza sativa,and grapevine,few reports on pear ATL gene families have been reported.In this study,92 PbrATL genes were identified and analyzed from the Pyrus breschneideri genome.Motif analysis and phylogenetic tree generation divided them into nine subgroups,and chromosome localization analysis showed that the 92 PbrATL genes were distributed in 16 of 17 pear chromosomes.Transcriptome data and quantitative real-time polymerase chain reaction(qRT-PCR)experiments demonstrated that PbrATL18,PbrATL41,and PbrATL88 were involved in both pear drought resistance and Colletotrichum fructicola infection.In addition,Arabidopsis thaliana overexpressing PbrATL18 showed greater resistance to drought stress than the wild type(WT),and PbrATL18-silenced pear seedlings showed greater sensitivity to drought and C.fructicola infection than the controls.PbrATL18 regulated plant resistance by regulating chitinase(CHI),phenylalanine ammonia-lyase(PAL),polyphenol oxidase(PPO),catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD)activities.This study provided a reference for further exploring the functions of the PbrATL gene in drought resistance and C.fructicola infection. 展开更多
关键词 PEAR Colletotrichum fructicola Arabidopsis Toxicos en Levadura(ATL) Drought stress
下载PDF
Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification
15
作者 Shanni Cao Xue Zhao +6 位作者 Zhuojin Li Ranran Yu Yuqi Li Xinkai Zhou Wenhao Yan Dijun Chen Chao He 《Plant Diversity》 SCIE CAS CSCD 2024年第3期372-385,共14页
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we... Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types. 展开更多
关键词 ARABIDOPSIS Single cell transcriptome Gene regulatory network Data integration Plant cell atlas
下载PDF
Genome-wide and candidate gene association studies identify BnPAP17 as conferring the utilization of organic phosphorus in oilseed rape
16
作者 Ping Xu Hao Li +6 位作者 Haiyuan Li Ge Zhao Shengjie Dai Xiaoyu Cui Zhenning Liu Lei Shi Xiaohua Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1134-1149,共16页
Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key ... Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key role in P absorption.To investigate the genetic variability of RMT under low P availability,we dissected the genetic structure of RMTs by genome-wide association studies(GWAS),linkage mapping and candidate gene association studies(CGAS).A total of 52 suggestive loci were associated with RMTs under P stress conditions in 405 oilseed rape accessions.The purple acid phosphatase gene BnPAP17 was found to control the lateral root number(LRN)and root dry weight(RDW)under low P stress.The expression of BnPAP17 was increased in shoot tissue in P-efficient cultivars compared to root tissue and P-inefficient cultivars in response to low P stress.Moreover,the haplotype of BnPAP17^(Hap3)was detected for the selective breeding of P efficiency in oilseed rape.Over-expression of the BnPAP17^(Hap3)could promote the shoot and root growth with enhanced tolerance to low P stress and organic phosphorus(Po)utilization in oilseed rape.Collectively,these findings increase our understanding of the mechanisms underlying BnPAP17-mediated low P stress tolerance in oilseed rape. 展开更多
关键词 genome-wide association studies(GWAS) root morphology traits(RMTs) organic phosphorus(Po) oilseed rape BnPAP17
下载PDF
Rice canopy temperature is affected by nitrogen fertilizer
17
作者 Min Jiang Zhang Chen +3 位作者 Yuan Li Xiaomin Huang Lifen Huang Zhongyang Huo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期824-835,共12页
Canopy temperature strongly influences crop yield formation and is closely related to plant physiological traits.However, the effects of nitrogen treatment on canopy temperature and rice growth have yet to be comprehe... Canopy temperature strongly influences crop yield formation and is closely related to plant physiological traits.However, the effects of nitrogen treatment on canopy temperature and rice growth have yet to be comprehensively examined. We conducted a two-year field experiment with three rice varieties(HD-5, NJ-9108, and YJ-805) and three nitrogen treatments(zero-N control(CK), 200 kg ha~(–1)(MN), and 300 kg ha~(–1)(HN)). We measured canopy temperature using a drone equipped with a high-precision camera at the six stages of the growth period. Generally,canopy temperature was significantly higher for CK than for MN and HN during the tillering, jointing, booting, and heading stages. The temperature was not significantly different among the nitrogen treatments between the milky and waxy stages. The canopy temperature of different rice varieties was found to follow the order: HD-5>NJ-9108>YJ-805, but the difference was not significant. The canopy temperature of rice was mainly related to plant traits, such as shoot fresh weight(correlation coefficient r=–0.895), plant water content(–0.912), net photosynthesis(–0.84), stomatal conductance(–0.91), transpiration rate(–0.90), and leaf stomatal area(–0.83). A structural equation model(SEM) showed that nitrogen fertilizer was an important factor affecting the rice canopy temperature.Our study revealed:(1) A suite of plant traits was associated with the nitrogen effects on canopy temperature,(2) the heading stage was the best time to observe rice canopy temperature, and(3) at that stage, canopy temperature was negatively correlated with rice yield, panicle number, and grain number per panicle. This study suggests that canopy temperature can be a convenient and accurate indicator of rice growth and yield prediction. 展开更多
关键词 canopy temperature RICE physiological and biochemical characteristics YIELD
下载PDF
OsMYB84,a transcriptional regulator of OsCOPT2 and OsHMA5,modulates copper uptake and transport and yield production in rice
18
作者 Jingli Ding Chenchen Ji +6 位作者 Lu Yu Chuang Wang Guangda Ding Sheliang Wang Lei Shi Fangsen Xu Hongmei Cai 《The Crop Journal》 SCIE CSCD 2024年第2期456-469,共14页
Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator inv... Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu. 展开更多
关键词 OsMYB84 OsCOPT2 OsHMA5 COPPER RICE
下载PDF
Synthesis of betanin by expression of the core betalain biosynthetic pathway in carrot
19
作者 Bo Wang Yahui Wang +2 位作者 Yuanjie Deng Quanhong Yao Aisheng Xiong 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期732-742,共11页
Betalain has received increased attention because of its high nutritional value and crucial physiological functions.Based on the elucidation of its core biosynthetic pathway,betalain can be produced in additional plan... Betalain has received increased attention because of its high nutritional value and crucial physiological functions.Based on the elucidation of its core biosynthetic pathway,betalain can be produced in additional plants by metabolic engineering.Synthesis of betalain in carrot(Daucus carota L.)can improve its nutritional quality and economic value by extracting betalain from the fleshy root,non-edible part,and processing residue of carrot.In this study,two different constructs,namely,pYB:mCD(AomelOS,BvCYP76AD1S,and BvDODA1S)and p YB:CDD(BvCYP76AD1S,BvDODA1S,and MjcDOPA5GTS),were introduced into carrot for betanin synthesis by Agrobacterium-mediated transformation.Betanin can be synthetized in both transgenic calli,and p YB:m CD-transgenic callus can be used to produce betacyanin by suspension culture.However,pYB:mCD-transgenic seedlings can synthetize betanin only by tyrosine feeding.The p YB:CDD-transgenic lines can synthetize betanin in whole plants.The betanin content in fleshy root of pYB:CDD-transgenic carrot was(63.4±9)μg·g^(-1)fresh weight according to quantitative analysis.These betanin-producing carrot plant materials can be used to synthesize betanin for industrial application or consumption as dietary sources. 展开更多
关键词 Daucus carota L. BETANIN Biosynthesis Metabolic engineering BIOFORTIFICATION
下载PDF
Dynamics and genetic regulation of macronutrient concentrations during grain development in maize
20
作者 Pengcheng Li Shuangyi Yin +7 位作者 Yunyun Wang Tianze Zhu Xinjie Zhu Minggang Ji Wenye Rui Houmiao Wang Chenwu Xu Zefeng Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期781-794,共14页
Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics an... Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize. 展开更多
关键词 MAIZE nutrient concentration unconditional QTL mapping conditional QTL mapping dynamic trait
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部