The white-box attack is a new attack context in which it is assumed that cryptographic software is implemented on an un-trusted platform and all the implementation details are controlled by the attackers. So far, almo...The white-box attack is a new attack context in which it is assumed that cryptographic software is implemented on an un-trusted platform and all the implementation details are controlled by the attackers. So far, almost all white-box solutions have been broken. In this study, we propose a white-box encryption scheme that is not a variant of obfuscating existing ciphers but a completely new solution. The new scheme is based on the unbalanced Feistel network as well as the ASASASA (where "A" means affine, and "S" means substitution) structure. It has an optional input block size and is suitable for saving space compared with other solutions because the space requirement grows slowly (linearly) with the growth of block size. Moreover, our scheme not only has huge white-box diversity and white-box ambiguity but also has a particular construction to bypass public white-box cryptanalysis techniques, including attacks aimed at white-box variants of existing ciphers and attacks specific to the ASASASA structure. More precisely, we present a definition of white-box security with regard to equivalent key, and prove that our scheme satisfies such security requirement.展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 61272440, 61472251, and U1536101, and China Postdoctoral Science Foundation under Grant Nos. 2013M531174 and 2014T70417.
文摘The white-box attack is a new attack context in which it is assumed that cryptographic software is implemented on an un-trusted platform and all the implementation details are controlled by the attackers. So far, almost all white-box solutions have been broken. In this study, we propose a white-box encryption scheme that is not a variant of obfuscating existing ciphers but a completely new solution. The new scheme is based on the unbalanced Feistel network as well as the ASASASA (where "A" means affine, and "S" means substitution) structure. It has an optional input block size and is suitable for saving space compared with other solutions because the space requirement grows slowly (linearly) with the growth of block size. Moreover, our scheme not only has huge white-box diversity and white-box ambiguity but also has a particular construction to bypass public white-box cryptanalysis techniques, including attacks aimed at white-box variants of existing ciphers and attacks specific to the ASASASA structure. More precisely, we present a definition of white-box security with regard to equivalent key, and prove that our scheme satisfies such security requirement.