The southeastern Anatolia comprises numbers of tectono-magmatic]stratJgraphic units such as the metamorphic massifs, the ophiolites, the volcanic arc units and the granitoid rocks. All of them play important role for ...The southeastern Anatolia comprises numbers of tectono-magmatic]stratJgraphic units such as the metamorphic massifs, the ophiolites, the volcanic arc units and the granitoid rocks. All of them play important role for the late Cretaceous evolution of the southern Neotethys. The spatial and temporal relations of these units suggest the progressive development of coeval magmatism and thrusting during the late Cretaceous northward subduction/accretion. Our new U-Pb zircon data from the rhyolitic rocks of the wide-spread volcanic arc unit show ages of (83.1 ± 2.2)-(74.6 ± 4.4) Ma. Comparison of the ophiolites, the volcanic arc units and the granitoids suggest following late Cretaceous geological evolution. The ophiolites formed in a suprasubduction zone (SSZ) setting as a result of northward intra-oceanic subduction. A wide-spread island-arc tholeiitic volcanic unit developed on the top of the SSZ-type crust during 83 75 Ma. Related to regional plate convergence, northward under-thrusting of SSZ-type ophiolites and volcanic arc units was initiated beneath the Tauride platform (Malatya-Keban) and followed by the intrusion of I-type calc-alkaline volcanic arc granitoids during 84 82 Ma. New U-Pb ages from the arc-related volcanic-sedimentary unit and granitoids indicate that under-thrusting of ophiolites together with the arc-related units beneath the Malatya-Keban platform took place soon after the initiation of the volcanic arc on the top of the SSZ- type crust. Then the arc-related volcanic-sedimentary unit continued its development and lasted at - 75 Ma until the deposition of the late Campanian-Maastrichtian shallow marine limestone. The subduction trench eventually collided with the Bitlis-Pfitfirge massif giving rise to HP-LT meta- morphism of the Bitlis massif. Although the development of the volcanic arc units and the granitoids were coeval at the initial stage of the subduction/accretion both tectono-magmatic units were genetically different from each other.展开更多
基金a part of Ph.D study of Fatih KaraoglanFinancial support from the TBITAK(Project No.106Y231)+1 种基金Cukurova University Research Foundation(Project No.MMF2009D11)International Research Fellowship Programme supported by TUBITAK-BIDEB
文摘The southeastern Anatolia comprises numbers of tectono-magmatic]stratJgraphic units such as the metamorphic massifs, the ophiolites, the volcanic arc units and the granitoid rocks. All of them play important role for the late Cretaceous evolution of the southern Neotethys. The spatial and temporal relations of these units suggest the progressive development of coeval magmatism and thrusting during the late Cretaceous northward subduction/accretion. Our new U-Pb zircon data from the rhyolitic rocks of the wide-spread volcanic arc unit show ages of (83.1 ± 2.2)-(74.6 ± 4.4) Ma. Comparison of the ophiolites, the volcanic arc units and the granitoids suggest following late Cretaceous geological evolution. The ophiolites formed in a suprasubduction zone (SSZ) setting as a result of northward intra-oceanic subduction. A wide-spread island-arc tholeiitic volcanic unit developed on the top of the SSZ-type crust during 83 75 Ma. Related to regional plate convergence, northward under-thrusting of SSZ-type ophiolites and volcanic arc units was initiated beneath the Tauride platform (Malatya-Keban) and followed by the intrusion of I-type calc-alkaline volcanic arc granitoids during 84 82 Ma. New U-Pb ages from the arc-related volcanic-sedimentary unit and granitoids indicate that under-thrusting of ophiolites together with the arc-related units beneath the Malatya-Keban platform took place soon after the initiation of the volcanic arc on the top of the SSZ- type crust. Then the arc-related volcanic-sedimentary unit continued its development and lasted at - 75 Ma until the deposition of the late Campanian-Maastrichtian shallow marine limestone. The subduction trench eventually collided with the Bitlis-Pfitfirge massif giving rise to HP-LT meta- morphism of the Bitlis massif. Although the development of the volcanic arc units and the granitoids were coeval at the initial stage of the subduction/accretion both tectono-magmatic units were genetically different from each other.