Plasma treatment is necessary to optimize the performance of biomaterial surfaces.It enhances and regulates the performance of biomaterial su rfaces,creating an effective interface with the human body.Plasma treatment...Plasma treatment is necessary to optimize the performance of biomaterial surfaces.It enhances and regulates the performance of biomaterial su rfaces,creating an effective interface with the human body.Plasma treatments have the ability to modify the chemical com position and physical structu re of a surface while leaving its properties unaffected.They possess the ability to modify material su rfaces,eliminate contaminants,conduct investigations on cancer therapy,and facilitate wound healing.The subject of study in question involves the integration of plasma science and technology with biology and medicine.Using a helium plasma jet source,applying up to 18 kV,with an average power of 10 W,polymer foils were treated for 60 s.Plasma treatment has the ability to alter the chemical composition and physical structure of a su rface while maintaining its quality.This investigation involved the application of helium plasma at atmospheric pressure to polyamide 6 and polyethylene terephthalate sheets.The inquiry involves monitoring and assessing the plasma source and polymer materials,as well as analyzing the impacts of plasma therapy.Calculating the mean power of the discharge aids in assessing the economic efficacy of the plasma source.Electric discharge in helium at atmospheric pressure has beneficial effects in technology,where it increases the surface free energy of polymer materials.In biomedicine,it is used to investigate cytotoxicity and cell survival,particularly in direct blood exposure situations that can expedite coagulation.Comprehending the specific parameters that influence the plasma source in the desired manner for the intended application is of utmost im portance.展开更多
Of late, many synthesis processes have been studied to develop irregular nano-rnorphologies of gold nanostructures for biomedical applications in order to increase the efficacy of nanoparticle theranostics, tune the p...Of late, many synthesis processes have been studied to develop irregular nano-rnorphologies of gold nanostructures for biomedical applications in order to increase the efficacy of nanoparticle theranostics, tune the plasmonic absorbance spectra, and increase the sensitivity of biomolecule detection through surface enhanced Raman spectroscopy. Here we report, a novel, non-seed mediated versatile single pot synthesis method capable of producing hyperbranched gold "nano-polyvilli" with more than 50-90 branching nanowires propagating from a single origin within each structure. The technique was capable of achieving precise tuning of the branch propagation where the branching could be controlled by varying the duration of incubation, temperature, and hydrogen ion concentration.展开更多
基金financially supported by UEFISCDI,PNCDI III,project PN-III-P1-1.1-TE-2021(No.150/09.06.2022)supported by COST(European Cooperation in Science and Technology,available online:https://www.cost.eu,accessed on 20 November 2023)。
文摘Plasma treatment is necessary to optimize the performance of biomaterial surfaces.It enhances and regulates the performance of biomaterial su rfaces,creating an effective interface with the human body.Plasma treatments have the ability to modify the chemical com position and physical structu re of a surface while leaving its properties unaffected.They possess the ability to modify material su rfaces,eliminate contaminants,conduct investigations on cancer therapy,and facilitate wound healing.The subject of study in question involves the integration of plasma science and technology with biology and medicine.Using a helium plasma jet source,applying up to 18 kV,with an average power of 10 W,polymer foils were treated for 60 s.Plasma treatment has the ability to alter the chemical composition and physical structure of a su rface while maintaining its quality.This investigation involved the application of helium plasma at atmospheric pressure to polyamide 6 and polyethylene terephthalate sheets.The inquiry involves monitoring and assessing the plasma source and polymer materials,as well as analyzing the impacts of plasma therapy.Calculating the mean power of the discharge aids in assessing the economic efficacy of the plasma source.Electric discharge in helium at atmospheric pressure has beneficial effects in technology,where it increases the surface free energy of polymer materials.In biomedicine,it is used to investigate cytotoxicity and cell survival,particularly in direct blood exposure situations that can expedite coagulation.Comprehending the specific parameters that influence the plasma source in the desired manner for the intended application is of utmost im portance.
文摘Of late, many synthesis processes have been studied to develop irregular nano-rnorphologies of gold nanostructures for biomedical applications in order to increase the efficacy of nanoparticle theranostics, tune the plasmonic absorbance spectra, and increase the sensitivity of biomolecule detection through surface enhanced Raman spectroscopy. Here we report, a novel, non-seed mediated versatile single pot synthesis method capable of producing hyperbranched gold "nano-polyvilli" with more than 50-90 branching nanowires propagating from a single origin within each structure. The technique was capable of achieving precise tuning of the branch propagation where the branching could be controlled by varying the duration of incubation, temperature, and hydrogen ion concentration.