Increasing buildings’ resistance to earthquake forces is not always a desirable solution especially for the building contents that are irreplaceable or simply more valuable than the actual primary structure (e.g. mus...Increasing buildings’ resistance to earthquake forces is not always a desirable solution especially for the building contents that are irreplaceable or simply more valuable than the actual primary structure (e.g. museums, data storage Centre’s, etc.). Base isolation and seismic dampers can be employed to minimize inter-story drifts and floor accelerations via specially designed isolation and dampers system at the structural base, or at higher levels of the superstructure. In this research, we’ll examine the response of buildings isolated using isolation system hybrid consisting of Lead-Rubber Bearings (LRB), Flat Sliding Bearings (FSB), with the addition of Rotation Fiction Damper (FD) at the base, then compare the results with buildings that have traditional foundation, in terms of the (period, displacement and distribution shear force and height of the building). It conducts TIME HISTORY seismic analysis for some varying height buildings (eight, twelve, sixteen, and twenty stories), with help of SAP2000 using an earthquake acceleration-time history for (El- Centro). The results show that the use of insulation system Hybrid has had a significant impact on improving the performance of origin in terms of reducing displacements and base shear with in-creasing height of the building, but has had a negative impact on the drift, which leads to an in-crease in drift with the increased flexibility of the building.展开更多
A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically...A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically active zones. A new method for quick design of friction or yielding damping devices is presented. The effectiveness of the damping system employing such FDDs in a jacket platform is evaluated numerically. The influence of key parameters of the damping system on the vibration suppression of the offshore structure is studied in detail. To examine the vibration control effectiveness of the FDD for the jacket platform, performance of the controlled structure under the seismic forces is studied using numerical simulations. A parametric study is undertaken to discover the optimized slip load and brace area of the FDD. It is shown that the FDD is effective in mitigating the dynamic responses of the offshore platform structure.展开更多
文摘Increasing buildings’ resistance to earthquake forces is not always a desirable solution especially for the building contents that are irreplaceable or simply more valuable than the actual primary structure (e.g. museums, data storage Centre’s, etc.). Base isolation and seismic dampers can be employed to minimize inter-story drifts and floor accelerations via specially designed isolation and dampers system at the structural base, or at higher levels of the superstructure. In this research, we’ll examine the response of buildings isolated using isolation system hybrid consisting of Lead-Rubber Bearings (LRB), Flat Sliding Bearings (FSB), with the addition of Rotation Fiction Damper (FD) at the base, then compare the results with buildings that have traditional foundation, in terms of the (period, displacement and distribution shear force and height of the building). It conducts TIME HISTORY seismic analysis for some varying height buildings (eight, twelve, sixteen, and twenty stories), with help of SAP2000 using an earthquake acceleration-time history for (El- Centro). The results show that the use of insulation system Hybrid has had a significant impact on improving the performance of origin in terms of reducing displacements and base shear with in-creasing height of the building, but has had a negative impact on the drift, which leads to an in-crease in drift with the increased flexibility of the building.
文摘A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically active zones. A new method for quick design of friction or yielding damping devices is presented. The effectiveness of the damping system employing such FDDs in a jacket platform is evaluated numerically. The influence of key parameters of the damping system on the vibration suppression of the offshore structure is studied in detail. To examine the vibration control effectiveness of the FDD for the jacket platform, performance of the controlled structure under the seismic forces is studied using numerical simulations. A parametric study is undertaken to discover the optimized slip load and brace area of the FDD. It is shown that the FDD is effective in mitigating the dynamic responses of the offshore platform structure.