The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. ...The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations. These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple. Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs. Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized.It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids. Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid. In order to authenticate our present study, the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case.展开更多
In the present study, we discuss the peristaltic flow of a Johnson-Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative st...In the present study, we discuss the peristaltic flow of a Johnson-Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative study is also made to check the validity of the solutions. The expressions for pressure rise frictional forces, pressure gradient, and stream lines are presented to interpret the behavior of various physical quantities of the Johnson-Segalman fluid.展开更多
In this study, a simple Arduino-based experiment was designed to examine the acceleration of the object during free fall and to calculate the value of “g” (acceleration due to gravity). Experimental data on the free...In this study, a simple Arduino-based experiment was designed to examine the acceleration of the object during free fall and to calculate the value of “g” (acceleration due to gravity). Experimental data on the free fall of a plastic box through the air was gathered with the help of an ultrasonic distance sensor (HC-SR04). Readings were taken at different intervals during the fall to obtain distance time curves. Acceleration during the free fall was then determined by applying the standard kinematic equations. The shape of the distance-time graphs obtained from the experimental setup was in good agreement with the predicted graphs and the calculated values of g lie within the expected range. After repeated experiments, value of gravitational acceleration was found to be 9.805 m/s2. Hardware and software prepared for the experiment are sufficient to examine movement of ordinary objects during free fall, therefore the experiment can be easily settled in a laboratory for the purpose of learning and teaching.展开更多
In the present article, peristaltic transport of copper nano fluid in a curved channel with complaint walls is studied. Shape effects of nanosize particles are discussed. The mathematical formulation encompasses momen...In the present article, peristaltic transport of copper nano fluid in a curved channel with complaint walls is studied. Shape effects of nanosize particles are discussed. The mathematical formulation encompasses momentum and heat conservation equations with appropriate boundary conditions for compliant wails. Sophisticated correlations are employed for thermal conductivity of the nanoparticles. The nonlinear boundary value problem is normalized with appropriate variables and closed-form solutions are derived for stream function, pressure gradient and temperature profile. A detailed study is performed for the influence of various nanoparticle geometries (bricks, cylinders and platelets). With greater curvature value, pressure gradient is enhanced for various nanoparticle geometries. Temperature is dramatically modified with nanoparticle geometry and greater thermal conductivity is achieved with brick shaped nanoparticles in the fluid.展开更多
The present article is a study of mixed convective peristaltic flow of Cu-blood nanofluid confined in a non-uniform tube along with the velocity slip conditions and wall properties.Endoscopic or catheterized special e...The present article is a study of mixed convective peristaltic flow of Cu-blood nanofluid confined in a non-uniform tube along with the velocity slip conditions and wall properties.Endoscopic or catheterized special effects are also taken into description.Upon utilization of the large wavelength and small reynolds number approximation,the non-dimensional governing differential equation took a more simplified form,which is then solved for the exact solutions.Afterwards,these outcomes are offered graphically and are debated in detail.Velocity profile for pure blood as well as Cu-blood and no-slip and slip effects are also discussed separately.Streamlines pattern is also discussed for different physical parameters.展开更多
The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and conve...The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and convective boundary condition are also taken into account.The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis.The resulting nonlinear momentum,energy and nano particle equations are simplifed using similarity transformations.Numerical solutions have been obtained for the velocity,temperature and nanoparticle fraction profles.The influence of physical parameters on the velocity,temperature,nanoparticle fraction,rates of heat transfer and nanoparticle fraction are shown graphically.展开更多
The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging techno...The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes(SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse(i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.展开更多
This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number,chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a...This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number,chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity,temperature and concentration fields are shown graphically.展开更多
The purpose of the current investigation is to examine the influence of different physical parameters on the entropy gene- ration. The entropy generation number due to heat transfer and fluid friction is formulated. T...The purpose of the current investigation is to examine the influence of different physical parameters on the entropy gene- ration. The entropy generation number due to heat transfer and fluid friction is formulated. The velocity and temperature distributions across the tube are presented along with pressure attributes. Exact analytical solution for velocity and temperature profile is obtained. It is found that the entropy generation number attains high values in the region close to the walls of the tube, while it falls to low values near the center of the tube.展开更多
In this article, we discuss the two-dimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as the base fluid under the influence temperature dependent viscosity. Similarity transfo...In this article, we discuss the two-dimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as the base fluid under the influence temperature dependent viscosity. Similarity transformations are used to simplify the governing boundary layer equations for nanofluid. This is the first article on the stagnation point flow of CNTs over a stretching sheet with variable viscosity. A well known Reynold's model of viscosity is used. Single wall CNTs are used with water as a base fluid. The resulting nonlinear coupled equations with the relevant boundary conditions are solved numerically using shooting method. The influence of the flow parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are explored and presented in forms of graphs and interpreted physically.展开更多
The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has tremendous applications in various fields. Inspired ...The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has tremendous applications in various fields. Inspired by multidisciplinary invention in this direction, a fuid mechanical model is proposed to study the Magneto-hydrodynamics (MHD) and heat transfer for nanofluids fabricated by the dispersion of nanoparticles in water as base fluid. The steady flow is induced by metachronal wave propulsion due to beating cilia. The flow regime is asymmetric channel. The flow is restricted under the low Reynolds number and long wavelength approximations. Cilia boundary conditions for velocity components are employed to find the exact solutions. The impacts of pertinent physical parameters on temperature profile, velocity profile, pressure, and stream lines are computed numerically. It is observed that velocity is inversely proportional to magnetic Reynolds number, Reynolds number, Strommer's number and velocity is directly proportional to flow rate. It is analyzed that temperature is inversely proportional to Strommer's number and magnetic Reynolds number and directly proportional to Brinkmann number and flow rate. The temperature is maximum at the center of the channel and it starts decreasing towards the boundary walls.展开更多
The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries wi...The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries with permeable walls. The convection through the flow is studied with compliments to the entropy generation. Governing problem is formulized and solved for low Reynold's number and long wavelength approximations. Exact analytical solutions have been obtained and are analyzed graphically. It is seen that temperature for pure water is lower as compared to the copper water. It gains magnitude with an increase in the slip parameter.展开更多
文摘The present study inspects the non-aligned stagnation point nano fluid over a convective surface in the presence of partial slip. Two types of base fluids namely water and kerosene are selected with Cu nanoparticles. The governing physical problem is presented and transformed into a system of coupled nonlinear differential equations using suitable similarity transformations. These equations are then solved numerically using midpoint integration scheme along with Richardson extrapolation via Maple. Impact of relevant physical parameters on the dimensionless velocity and temperature profiles are portrayed through graphs. Physical quantities such as local skin frictions co-efficient and Nusselt numbers are tabularized.It is detected from numerical computations that kerosene-based nano fluids have better heat transfer capability compared with water-based nanofluids. Moreover it is found that water-based nanofluids offer less resistance in terms of skin friction than kerosene-based fluid. In order to authenticate our present study, the calculated results are compared with the prevailing literature and a considerable agreement is perceived for the limiting case.
文摘In the present study, we discuss the peristaltic flow of a Johnson-Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative study is also made to check the validity of the solutions. The expressions for pressure rise frictional forces, pressure gradient, and stream lines are presented to interpret the behavior of various physical quantities of the Johnson-Segalman fluid.
文摘In this study, a simple Arduino-based experiment was designed to examine the acceleration of the object during free fall and to calculate the value of “g” (acceleration due to gravity). Experimental data on the free fall of a plastic box through the air was gathered with the help of an ultrasonic distance sensor (HC-SR04). Readings were taken at different intervals during the fall to obtain distance time curves. Acceleration during the free fall was then determined by applying the standard kinematic equations. The shape of the distance-time graphs obtained from the experimental setup was in good agreement with the predicted graphs and the calculated values of g lie within the expected range. After repeated experiments, value of gravitational acceleration was found to be 9.805 m/s2. Hardware and software prepared for the experiment are sufficient to examine movement of ordinary objects during free fall, therefore the experiment can be easily settled in a laboratory for the purpose of learning and teaching.
文摘In the present article, peristaltic transport of copper nano fluid in a curved channel with complaint walls is studied. Shape effects of nanosize particles are discussed. The mathematical formulation encompasses momentum and heat conservation equations with appropriate boundary conditions for compliant wails. Sophisticated correlations are employed for thermal conductivity of the nanoparticles. The nonlinear boundary value problem is normalized with appropriate variables and closed-form solutions are derived for stream function, pressure gradient and temperature profile. A detailed study is performed for the influence of various nanoparticle geometries (bricks, cylinders and platelets). With greater curvature value, pressure gradient is enhanced for various nanoparticle geometries. Temperature is dramatically modified with nanoparticle geometry and greater thermal conductivity is achieved with brick shaped nanoparticles in the fluid.
基金Supported by the project from HEC(SRGP)(No:21-1712/SRGP/R&D/HEC/2017)
文摘The present article is a study of mixed convective peristaltic flow of Cu-blood nanofluid confined in a non-uniform tube along with the velocity slip conditions and wall properties.Endoscopic or catheterized special effects are also taken into description.Upon utilization of the large wavelength and small reynolds number approximation,the non-dimensional governing differential equation took a more simplified form,which is then solved for the exact solutions.Afterwards,these outcomes are offered graphically and are debated in detail.Velocity profile for pure blood as well as Cu-blood and no-slip and slip effects are also discussed separately.Streamlines pattern is also discussed for different physical parameters.
文摘The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and convective boundary condition are also taken into account.The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis.The resulting nonlinear momentum,energy and nano particle equations are simplifed using similarity transformations.Numerical solutions have been obtained for the velocity,temperature and nanoparticle fraction profles.The influence of physical parameters on the velocity,temperature,nanoparticle fraction,rates of heat transfer and nanoparticle fraction are shown graphically.
文摘The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes(SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse(i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.
文摘This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number,chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity,temperature and concentration fields are shown graphically.
文摘The purpose of the current investigation is to examine the influence of different physical parameters on the entropy gene- ration. The entropy generation number due to heat transfer and fluid friction is formulated. The velocity and temperature distributions across the tube are presented along with pressure attributes. Exact analytical solution for velocity and temperature profile is obtained. It is found that the entropy generation number attains high values in the region close to the walls of the tube, while it falls to low values near the center of the tube.
文摘In this article, we discuss the two-dimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as the base fluid under the influence temperature dependent viscosity. Similarity transformations are used to simplify the governing boundary layer equations for nanofluid. This is the first article on the stagnation point flow of CNTs over a stretching sheet with variable viscosity. A well known Reynold's model of viscosity is used. Single wall CNTs are used with water as a base fluid. The resulting nonlinear coupled equations with the relevant boundary conditions are solved numerically using shooting method. The influence of the flow parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are explored and presented in forms of graphs and interpreted physically.
文摘The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has tremendous applications in various fields. Inspired by multidisciplinary invention in this direction, a fuid mechanical model is proposed to study the Magneto-hydrodynamics (MHD) and heat transfer for nanofluids fabricated by the dispersion of nanoparticles in water as base fluid. The steady flow is induced by metachronal wave propulsion due to beating cilia. The flow regime is asymmetric channel. The flow is restricted under the low Reynolds number and long wavelength approximations. Cilia boundary conditions for velocity components are employed to find the exact solutions. The impacts of pertinent physical parameters on temperature profile, velocity profile, pressure, and stream lines are computed numerically. It is observed that velocity is inversely proportional to magnetic Reynolds number, Reynolds number, Strommer's number and velocity is directly proportional to flow rate. It is analyzed that temperature is inversely proportional to Strommer's number and magnetic Reynolds number and directly proportional to Brinkmann number and flow rate. The temperature is maximum at the center of the channel and it starts decreasing towards the boundary walls.
文摘The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries with permeable walls. The convection through the flow is studied with compliments to the entropy generation. Governing problem is formulized and solved for low Reynold's number and long wavelength approximations. Exact analytical solutions have been obtained and are analyzed graphically. It is seen that temperature for pure water is lower as compared to the copper water. It gains magnitude with an increase in the slip parameter.