直流系统是支撑高比例新能源接入与灵活高效用能的重要技术方向。固态式直流断路器(solid state DC circuit breaker,SSCB)具有开断速度极快、无电弧、寿命长等优点,在中低压直流系统的故障保护中得到广泛应用。随着电力电子器件的发展...直流系统是支撑高比例新能源接入与灵活高效用能的重要技术方向。固态式直流断路器(solid state DC circuit breaker,SSCB)具有开断速度极快、无电弧、寿命长等优点,在中低压直流系统的故障保护中得到广泛应用。随着电力电子器件的发展,固态式直流断路器的拓扑结构、工作性能也在不断进步。为此基于逆阻型集成门极换流晶闸管(intergated gate commutate thyristor,IGCT),提出了一种新型的固态式直流断路器结构及设计方法,通流支路采用逆阻IGCT反并联结构实现双向通流,缓冲支路采用金属氧化物避雷器(metal oxide varistor,MOV)-电容结构来抑制过电压,吸能支路采用MOV吸收系统能量。进一步地,给出了关键元器件的参数设计方法,并验证了有效性;设计了性能良好的重力热管散热器,单个模块散热功率可达700 W;提出了主被动结合的控保策略,提高断路器的保护性能。最后,研制了固态式直流断路器样机,可用于750 V以内的低压直流系统,额定通流可达2 kA,可在百微秒内开断10 kA故障电流,成本低、体积小、高可靠,具有良好的应用前景。展开更多
As the power load increases, the capacity of switchgear becomes larger so the problem of overheating of switchgears becomes more significant. Whether the switchgears operate safely and reliably affects the reliability...As the power load increases, the capacity of switchgear becomes larger so the problem of overheating of switchgears becomes more significant. Whether the switchgears operate safely and reliably affects the reliability and economy of the entire power system. Different methods have been tried to study the thermal problems of switch-gears. However, there are few experimental studies on the switchgear entity. In this study, a series of temperature rise tests were carried out on medium‐voltage high‐ca-pacity switchgear to explore laws of temperature rise. First, five groups of multi‐con-ditional experiments were carried out including changes of the load current, ventilation conditions and loop resistance. Then, multi‐dimensional temperature‐rise characterisa-tion was analysed based on the experimental results and the relating theory. Finally, a circuit‐based lumped‐parameter thermal network (LPTN) model was developed by analysing the heat dissipation in switchgear and used to determine the steady‐state temperature distribution of the switchgear. The model is verified by comparing the simulation results with the experimental results.展开更多
In this paper we present a designated verifier-set signature(DVSS),in which the signer allows to designate many verifiers rather than one verifier,and each designated verifier can verify the validity of signature by h...In this paper we present a designated verifier-set signature(DVSS),in which the signer allows to designate many verifiers rather than one verifier,and each designated verifier can verify the validity of signature by himself.Our research starts from identity-based aggregator(IBA)that compresses a designated set of verifier’s identities to a constant-size random string in cryptographic space.The IBA is constructed by mapping the hash of verifier’s identity into zero or pole of a target curve,and extracting one curve’s point as the result of aggregation according to a specific secret.Considering the different types of target curves,these two IBAs are called as zeros-based aggregator and poles-based aggregator,respectively.Based on them,we propose a practical DVSS scheme constructed from the zero-pole cancellation method which can eliminate the same elements between zeros-based aggregator and poles-based aggregator.Due to this design,our DVSS scheme has some distinct advantages:(1)the signature supporting arbitrary dynamic verifiers extracted from a large number of users;and(2)the signature with short and constant length.We rigorously prove that our DVSS scheme satisfies the security properties:correctness,consistency,unforgeability and exclusivity.This is a preview of subscription content,log in to check access.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:51922062National Key Research and Development Program,Grant/Award Number:2018YFB0904600。
文摘As the power load increases, the capacity of switchgear becomes larger so the problem of overheating of switchgears becomes more significant. Whether the switchgears operate safely and reliably affects the reliability and economy of the entire power system. Different methods have been tried to study the thermal problems of switch-gears. However, there are few experimental studies on the switchgear entity. In this study, a series of temperature rise tests were carried out on medium‐voltage high‐ca-pacity switchgear to explore laws of temperature rise. First, five groups of multi‐con-ditional experiments were carried out including changes of the load current, ventilation conditions and loop resistance. Then, multi‐dimensional temperature‐rise characterisa-tion was analysed based on the experimental results and the relating theory. Finally, a circuit‐based lumped‐parameter thermal network (LPTN) model was developed by analysing the heat dissipation in switchgear and used to determine the steady‐state temperature distribution of the switchgear. The model is verified by comparing the simulation results with the experimental results.
基金The work was supported by the National Key Technologies R&D Programs of China(2018YFB1402702 and 2017YFB0802500)the“13th”Five-Year National Cryptographic Development Foundation(MMJJ20180208)+1 种基金NSFC-Genertec Joint Fund For Basic Research(U1636104)the National Natural Science Foundation of China(Grant Nos.61572132,61972032 and U1705264).
文摘In this paper we present a designated verifier-set signature(DVSS),in which the signer allows to designate many verifiers rather than one verifier,and each designated verifier can verify the validity of signature by himself.Our research starts from identity-based aggregator(IBA)that compresses a designated set of verifier’s identities to a constant-size random string in cryptographic space.The IBA is constructed by mapping the hash of verifier’s identity into zero or pole of a target curve,and extracting one curve’s point as the result of aggregation according to a specific secret.Considering the different types of target curves,these two IBAs are called as zeros-based aggregator and poles-based aggregator,respectively.Based on them,we propose a practical DVSS scheme constructed from the zero-pole cancellation method which can eliminate the same elements between zeros-based aggregator and poles-based aggregator.Due to this design,our DVSS scheme has some distinct advantages:(1)the signature supporting arbitrary dynamic verifiers extracted from a large number of users;and(2)the signature with short and constant length.We rigorously prove that our DVSS scheme satisfies the security properties:correctness,consistency,unforgeability and exclusivity.This is a preview of subscription content,log in to check access.