Electrocatalytic and plasma-activated processes receive increasing attention in catalysis. Density functional theory(DFT) calculations are state-of-the-art tools for the fundamental study of reaction mechanisms and pr...Electrocatalytic and plasma-activated processes receive increasing attention in catalysis. Density functional theory(DFT) calculations are state-of-the-art tools for the fundamental study of reaction mechanisms and predicting the performance of catalytic materials. Proper application of DFT-based methods is crucial when investigating charge-doped electrode surfaces during electrocatalytic and plasma-activated reactions. Here, as a model electrode for plasma-activated CO2 splitting, we studied the interactions of O, CO, and CO2 with the neutral and progressively charged Ag(111) metal surfaces. We show that the application of correction procedures is necessary to obtain accurate adsorption energy profiles of O atoms,CO and CO2 molecules on Ag surfaces that are under the influence of additional electrons. Interestingly,the oxidation of CO is found to shift from a Langmuir–Hinshelwood mechanism on a neutral electrode to an Eley–Rideal mechanism on charged electrodes. Furthermore, we show that the surface charging of Ag(111) electrodes increase their CO2 reduction performance by enhancing the adsorption of O atoms and desorption of CO molecules. A further increase in the absolute charge-state of the electrode surface is expected to waive the thermodynamic barriers for the CO2 splitting reaction.展开更多
Light absorption and scattering of plasmonic metal nanoparticles can lead to non-equilibrium charge carriers,intense electromagnetic near-fields,and heat generation,with promising applications in a vast range of field...Light absorption and scattering of plasmonic metal nanoparticles can lead to non-equilibrium charge carriers,intense electromagnetic near-fields,and heat generation,with promising applications in a vast range of fields,from chemical and physical sensing to nanomedicine and photocatalysis for the sustainable production of fuels and chemicals.Disentangling the relative contribution of thermal and non-thermal contributions in plasmon-driven processes is,however,difficult.Nanoscale temperature measurements are technically challenging,and macroscale experiments are often characterized by collective heating effects,which tend to make the actual temperature increase unpredictable.This work is intended to help the reader experimentally detect and quantify photothermal effects in plasmon-driven chemical reactions,to discriminate their contribution from that due to photochemical processes and to cast a critical eye on the current literature.To this aim,we review,and in some cases propose,seven simple experimental procedures that do not require the use of complex or expensive thermal microscopy techniques.These proposed procedures are adaptable to a wide range of experiments and fields of research where photothermal effects need to be assessed,such as plasmonic-assisted chemistry,heterogeneous catalysis,photovoltaics,biosensing,and enhanced molecular spectroscopy.展开更多
基金part of the European project KEROGREEN,which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no.763909funding from the initiative“Computational Sciences for Energy Researcah”of Shell and the Netherlands Organization for Scientific Research(NWO)grant no.15CSTT05。
文摘Electrocatalytic and plasma-activated processes receive increasing attention in catalysis. Density functional theory(DFT) calculations are state-of-the-art tools for the fundamental study of reaction mechanisms and predicting the performance of catalytic materials. Proper application of DFT-based methods is crucial when investigating charge-doped electrode surfaces during electrocatalytic and plasma-activated reactions. Here, as a model electrode for plasma-activated CO2 splitting, we studied the interactions of O, CO, and CO2 with the neutral and progressively charged Ag(111) metal surfaces. We show that the application of correction procedures is necessary to obtain accurate adsorption energy profiles of O atoms,CO and CO2 molecules on Ag surfaces that are under the influence of additional electrons. Interestingly,the oxidation of CO is found to shift from a Langmuir–Hinshelwood mechanism on a neutral electrode to an Eley–Rideal mechanism on charged electrodes. Furthermore, we show that the surface charging of Ag(111) electrodes increase their CO2 reduction performance by enhancing the adsorption of O atoms and desorption of CO molecules. A further increase in the absolute charge-state of the electrode surface is expected to waive the thermodynamic barriers for the CO2 splitting reaction.
基金support by the Dutch Research Council(Nederlandse Organisatie voor Wetenschappelijk Onderzoek)via the NWO Vidi award 680-47-550.
文摘Light absorption and scattering of plasmonic metal nanoparticles can lead to non-equilibrium charge carriers,intense electromagnetic near-fields,and heat generation,with promising applications in a vast range of fields,from chemical and physical sensing to nanomedicine and photocatalysis for the sustainable production of fuels and chemicals.Disentangling the relative contribution of thermal and non-thermal contributions in plasmon-driven processes is,however,difficult.Nanoscale temperature measurements are technically challenging,and macroscale experiments are often characterized by collective heating effects,which tend to make the actual temperature increase unpredictable.This work is intended to help the reader experimentally detect and quantify photothermal effects in plasmon-driven chemical reactions,to discriminate their contribution from that due to photochemical processes and to cast a critical eye on the current literature.To this aim,we review,and in some cases propose,seven simple experimental procedures that do not require the use of complex or expensive thermal microscopy techniques.These proposed procedures are adaptable to a wide range of experiments and fields of research where photothermal effects need to be assessed,such as plasmonic-assisted chemistry,heterogeneous catalysis,photovoltaics,biosensing,and enhanced molecular spectroscopy.