期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li_(10)GeP_(2)S_(12) 被引量:2
1
作者 Zhong-Heng Fu Xiang Chen +7 位作者 Nan Yao Xin Shen Xia-Xia Ma Shuai Feng Shuhao Wang Rui Zhang Linfeng Zhang Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期59-66,I0003,共9页
Solid-state batteries have received increasing attention in scientific and industrial communities,which benefits from the intrinsically safe solid electrolytes(SEs).Although much effort has been devoted to designing S... Solid-state batteries have received increasing attention in scientific and industrial communities,which benefits from the intrinsically safe solid electrolytes(SEs).Although much effort has been devoted to designing SEs with high ionic conductivities,it is extremely difficult to fully understand the ionic diffusion mechanisms in SEs through conventional experimental and theoretical methods.Herein,the temperature-dependent concerted diffusion mechanism of ions in SEs is explored through machinelearning molecular dynamics,taking Li_(10)GeP_(2)S_(12) as a prototype.Weaker diffusion anisotropy,more disordered Li distributions,and shorter residence time are observed at a higher temperature.Arrhenius-type temperature dependence is maintained within a wide temperature range,which is attributed to the linear temperature dependence of jump frequencies of various concerted diffusion modes.These results provide a theoretical framework to understand the ionic diffusion mechanisms in SEs and deepen the understanding of the chemical origin of temperature-dependent concerted diffusions in SEs. 展开更多
关键词 Solid-state batteries Solid electrolytes Concerted diffusion Machine-learning molecular dynamics
下载PDF
Synergistic application of molecular docking and machine learning for improved binding pose
2
作者 Yaqi Li Hongrui Lin +5 位作者 He Yang Yannan Yuan Rongfeng Zou Gengmo Zhou Linfeng Zhang Hang Zheng 《National Science Open》 2024年第2期36-45,共10页
Accurate prediction of protein-ligand complex structures is a crucial step in structure-based drug design.Traditional molecular docking methods exhibit limitations in terms of accuracy and sampling space,while relying... Accurate prediction of protein-ligand complex structures is a crucial step in structure-based drug design.Traditional molecular docking methods exhibit limitations in terms of accuracy and sampling space,while relying on machine-learning approaches may lead to invalid conformations.In this study,we propose a novel strategy that combines molecular docking and machine learning methods.Firstly,the protein-ligand binding poses are predicted using a deep learning model.Subsequently,position-restricted docking on predicted binding poses is performed using Uni-Dock,generating physically constrained and valid binding poses.Finally,the binding poses are re-scored and ranked using machine learning scoring functions.This strategy harnesses the predictive power of machine learning and the physical constraints advantage of molecular docking.Evaluation experiments on multiple datasets demonstrate that,compared to using molecular docking or machine learning methods alone,our proposed strategy can significantly improve the success rate and accuracy of protein-ligand complex structure predictions. 展开更多
关键词 binding pose molecular docking machine learning machine learning scoring function
原文传递
Structural mechanism of a dual-functional enzyme Dgp A/B/C as both a C-glycoside cleaving enzyme and an O-to C-glycoside isomerase
3
作者 Pengfei He Sha Wang +7 位作者 Sen Li Siqi Liu Shuqi Zhou Jing Wang Jiayue Tao Dongdong Wang Rufeng Wang Wenfu Ma 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第1期246-255,共10页
The C-glycosidic bond that connects the sugar moiety with aglycone is difficult to be broken or made due to its inert nature.The knowledge of C-glycoside breakdown and synthesis is very limited.Recently,the enzyme Dgp... The C-glycosidic bond that connects the sugar moiety with aglycone is difficult to be broken or made due to its inert nature.The knowledge of C-glycoside breakdown and synthesis is very limited.Recently,the enzyme Dgp A/B/C cascade from a human intestinal bacterium PUE was identified to specifically cleave the C-glycosidic bond of puerarin(daidzein-8-C-glucoside).Here we investigated how puerarin is recognized and oxidized by Dgp A based on crystal structures of Dgp A with or without substrate and biochemical characterization.More strikingly,we found that apart from being a C-glycoside cleaving enzyme,Dgp A/B/C is capable of efficiently converting O-to C-glycoside showing the activity as a structure isomerase.A possible mechanistic model was proposed dependently of the simulated complex structure of Dgp B/C with 3’’-oxo-daidzin and structure-based mutagenesis.Our findings not only shed light on understanding the enzyme-mediated C-glycosidic bond breakage and formation,but also may help to facilitate stereospecific C-glycoside synthesis in pharmaceutical industry. 展开更多
关键词 C-GLYCOSIDE O-Glycoside C-Glycoside cleaving enzyme ISOMERASE Gut microbiota Flavonoid Puerarin and oxidoreductase
原文传递
The highest melting point material:Searched by Bayesian global optimization with deep potential molecular dynamics
4
作者 Yinan Wang Bo Wen +4 位作者 Xingjian Jiao Ya Li Lei Chen Yujin Wang Fu-Zhi Dai 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第4期803-814,共12页
The interest in refractory materials is increasing rapidly in recent decades due to the development of hypersonic vehicles.However,the substance that has the highest melting point(Tm)keeps a secret,since precise measu... The interest in refractory materials is increasing rapidly in recent decades due to the development of hypersonic vehicles.However,the substance that has the highest melting point(Tm)keeps a secret,since precise measurements in extreme conditions are overwhelmingly difficult.In the present work,an accurate deep potential(DP)model of a Hf-Ta-C-N system was first trained,and then applied to search for the highest melting point material by molecular dynamics(MD)simulation and Bayesian global optimization(BGO).The predicted melting points agree well with the experiments and confirm that carbon site vacancies can enhance the melting point of rock-saltstructure carbides.The solid solution with N is verified as another new and more effective melting point enhancing approach for HfC,while a conventional routing of the solid solution with Ta(e.g.,HfTa_(4)C_(5))is not suggested to result in a maximum melting point.The highest melting point(~4236 K)is achieved with the composition of HfCo.638No.271,which is~80 K higher than the highest value in a Hf-C binary system.Dominating mechanism of the N addition is believed to be unstable C-N and N-N bonds in liquid phase,which reduces liquid phase entropy and renders the liquid phase less stable.The improved melting point and less gas generation during oxidation by the addition of N provide a new routing to modify thermal protection materials for the hypersonic vehicles. 展开更多
关键词 melting point(T_(m)) carbides CARBONITRIDES deep potential(DP) Bayesiannglobal optimization(BGO)
原文传递
Atomic-scale simulations in multi-component alloys and compounds:A review on advances in interatomic potential
5
作者 Feiyang Wang Hong-Hui Wu +8 位作者 Linshuo Dong Guangfei Pan Xiaoye Zhou Shuize Wang Ruiqiang Guo Guilin Wu Junheng Gao Fu-Zhi Dai Xinping Mao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第34期49-65,共17页
Multi-component alloys have demonstrated excellent performance in various applications,but the vast range of possible compositions and microstructures makes it challenging to identify optimized alloys for specific pur... Multi-component alloys have demonstrated excellent performance in various applications,but the vast range of possible compositions and microstructures makes it challenging to identify optimized alloys for specific purposes.To overcome this challenge,large-scale atomic simulation techniques have been widely used for the design and optimization of multi-component alloys.The capability and reliability of large-scale atomic simulations essentially rely on the quality of interatomic potentials that describe the interactions between atoms.This work provides a comprehensive summary of the latest advances in atomic simulation techniques for multi-component alloys.The focus is on interatomic potentials,including both conventional empirical potentials and newly developed machine learning potentials(MLPs).The fitting processes for different types of interatomic potentials applied to multi-component alloys are also discussed.Finally,the challenges and future perspectives in developing MLPs are thoroughly addressed.Overall,this review provides a valuable resource for researchers interested in developing optimized multicomponent alloys using atomic simulation techniques. 展开更多
关键词 Multi-component alloys Atomic simulation Empirical potentials Machine learning potentials
原文传递
Design of platinum single-atom doped metal nanoclusters as efficient oxygen reduction electrocatalysts by coupling electronic descriptor 被引量:2
6
作者 Qing Liu Xiaoxu Wang +3 位作者 Lu Li Keke Song Ping Qian Yuan Ping Feng 《Nano Research》 SCIE EI CSCD 2022年第8期7016-7025,共10页
Inspired by the single-atom catalysts(SACs)concept,we rationally design a series of Pt single atom catalysts embedded in different transition metal nanoclusters through first-principles calculations.In these so-called... Inspired by the single-atom catalysts(SACs)concept,we rationally design a series of Pt single atom catalysts embedded in different transition metal nanoclusters through first-principles calculations.In these so-called“crown-jewel”(CJ)structures,Pt atoms(jewels)occupy the vertex sites of the metal nanocluster(crown)surface.We investigated the thermal stability and oxygen reduction reaction(ORR)catalytic activity of these catalysts.The results reveal that CJ-structured PtCu nanoclusters are stable and possess a comparable or even better ORR activity compared to Pt catalyst,making it a promising candidate for low-cost ORR catalysts.The effect of cluster size on the adsorption strength of ORR intermediates and catalytic property has also been studied.Furthermore,the overall ORR catalytic activity trend of these SACs is explained based on analysis of their electronic properties.A descriptorΨwas established to provide further insight into the correlation between the electronic structure and catalytic activity,which provides a design strategy for new ORR catalysts.More importantly,we reveal that this electronic descriptor can be extended to predict other CJ-structured nanoclusters. 展开更多
关键词 single-atom catalysts crown-jewel oxygen reduction reaction(ORR) catalyst design NANOCLUSTER
原文传递
Viscosity in water from first-principles and deep-neural-network simulations 被引量:3
7
作者 Cesare Malosso Linfeng Zhang +2 位作者 Roberto Car Stefano Baroni Davide Tisi 《npj Computational Materials》 SCIE EI CSCD 2022年第1期1318-1327,共10页
We report on an extensive study of the viscosity of liquid water at near-ambient conditions,performed within the Green-Kubo theory of linear response and equilibrium ab initio molecular dynamics(AIMD),based on density... We report on an extensive study of the viscosity of liquid water at near-ambient conditions,performed within the Green-Kubo theory of linear response and equilibrium ab initio molecular dynamics(AIMD),based on density-functional theory(DFT).In order to cope with the long simulation times necessary to achieve an acceptable statistical accuracy,our ab initio approach is enhanced with deep-neural-network potentials(NNP).This approach is first validated against AIMD results,obtained by using the Perdew–Burke–Ernzerhof(PBE)exchange-correlation functional and paying careful attention to crucial,yet often overlooked,aspects of the statistical data analysis.Then,we train a second NNP to a dataset generated from the Strongly Constrained and Appropriately Normed(SCAN)functional.Once the error resulting from the imperfect prediction of the melting line is offset by referring the simulated temperature to the theoretical melting one,our SCAN predictions of the shear viscosity of water are in very good agreement with experiments. 展开更多
关键词 VISCOSITY STRONGLY AMBIENT
原文传递
Deep potentials for materials science 被引量:6
8
作者 Tongqi Wen Linfeng Zhang +2 位作者 Han Wang Weinan E David J Srolovitz 《Materials Futures》 2022年第2期89-115,共27页
To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and be... To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and been widely applied;i.e.machine learning potentials(MLPs).One recently developed type of MLP is the deep potential(DP)method.In this review,we provide an introduction to DP methods in computational materials science.The theory underlying the DP method is presented along with a step-by-step introduction to their development and use.We also review materials applications of DPs in a wide range of materials systems.The DP Library provides a platform for the development of DPs and a database of extant DPs.We discuss the accuracy and efficiency of DPs compared with ab initio methods and empirical potentials. 展开更多
关键词 deep potential atomistic simulation machine learning potential neural network
原文传递
Grain boundary segregation induced strong UHTCs at elevated temperatures:A universal mechanism from conventional UHTCs to high entropy UHTCs
9
作者 Fu-Zhi Dai Bo Wen +3 位作者 Yinjie Sun Yixiao Ren Huimin Xiang Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第28期26-33,共8页
Ultra-high temperature ceramics(UHTCs)exhibit a unique combination of excellent properties,including ultra-high melting point,excellent chemical stability,and good oxidation resistance,which make them promising candid... Ultra-high temperature ceramics(UHTCs)exhibit a unique combination of excellent properties,including ultra-high melting point,excellent chemical stability,and good oxidation resistance,which make them promising candidates for aerospace and nuclear applications.However,the degradation of hightemperature strength is one of the main limitations for their ultra-high temperature applications.Thus,searching for mechanisms that can help to develop high-performance UHTCs with good high-temperature mechanical properties is urgently needed.To achieve this goal,grain boundary segregation of a series of carbides,including conventional,medium entropy,and high entropy transition metal carbides,i.e.,Zr_(0.95)W_(0.05)C,TiZrHfC_(3),ZrHfNbTaC_(4),TiZrHfNbTaC_(5),were studied by atomistic simulations with a fitted Deep Potential(DP),and the effects of segregation on grain boundary strength were emphasized.For all the studied carbides,grain boundary segregations are realized,which are dominated by the atomic size effect.In addition,tensile simulations indicate that grain boundaries(GBs)will usually be strengthened due to segregation.Our simulation results reveal that grain boundary segregation may be a universal mechanism in enhancing the high-temperature strength of both conventional UHTCs and medium/high entropy UHTCs,since GBs play a key role in controlling the fracture of UHTCs at elevated temperatures. 展开更多
关键词 UHTCs High entropy ceramics Grain boundary segregation High-temperature strength Machine learning potential
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部