An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m...An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system.展开更多
A feature extraction and fusion algorithm was constructed by combining principal component analysis(PCA) and linear discriminant analysis(LDA) to detect a fault state of the induction motor.After yielding a feature ve...A feature extraction and fusion algorithm was constructed by combining principal component analysis(PCA) and linear discriminant analysis(LDA) to detect a fault state of the induction motor.After yielding a feature vector with PCA and LDA from current signal that was measured by an experiment,the reference data were used to produce matching values.In a diagnostic step,two matching values that were obtained by PCA and LDA,respectively,were combined by probability model,and a faulted signal was finally diagnosed.As the proposed diagnosis algorithm brings only merits of PCA and LDA into relief,it shows excellent performance under the noisy environment.The simulation was executed under various noisy conditions in order to demonstrate the suitability of the proposed algorithm and showed more excellent performance than the case just using conventional PCA or LDA.展开更多
Comparison and data analysis with the similarity measures and entropy for fuzzy sets were carried out. The distance proportional value between the fuzzy set and the corresponding crisp set was considered by the fuzzy ...Comparison and data analysis with the similarity measures and entropy for fuzzy sets were carried out. The distance proportional value between the fuzzy set and the corresponding crisp set was considered by the fuzzy entropy. The relation between the similarity measure and the entropy for fuzzy set was also analyzed. The fuzzy entropy was reformulated as the dissimilarity measure. Furthermore, crisp set having the minimum uncertainty with respect to the corresponding fuzzy set was also proposed. Finally, derivation of a similarity measure from entropy with the help of total information property was derived. A simple example shows the relation between similarity measure and fuzzy entropy, in which the summation of similarity measure and fuzzy entropy represents a constant value.展开更多
基金Work supported by the Second Stage of Brain Korea 21 ProjectsWork(2010-0020163) supported by Priority Research Centers Program through the National Research Foundation (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system.
基金Project supported by the Second Stage of Brain Korea 21 ProjectProject(2010-0020163) supported by Priority Research Centers Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education,Science and Technology
文摘A feature extraction and fusion algorithm was constructed by combining principal component analysis(PCA) and linear discriminant analysis(LDA) to detect a fault state of the induction motor.After yielding a feature vector with PCA and LDA from current signal that was measured by an experiment,the reference data were used to produce matching values.In a diagnostic step,two matching values that were obtained by PCA and LDA,respectively,were combined by probability model,and a faulted signal was finally diagnosed.As the proposed diagnosis algorithm brings only merits of PCA and LDA into relief,it shows excellent performance under the noisy environment.The simulation was executed under various noisy conditions in order to demonstrate the suitability of the proposed algorithm and showed more excellent performance than the case just using conventional PCA or LDA.
基金Project(2010-0020163) supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Korea
文摘Comparison and data analysis with the similarity measures and entropy for fuzzy sets were carried out. The distance proportional value between the fuzzy set and the corresponding crisp set was considered by the fuzzy entropy. The relation between the similarity measure and the entropy for fuzzy set was also analyzed. The fuzzy entropy was reformulated as the dissimilarity measure. Furthermore, crisp set having the minimum uncertainty with respect to the corresponding fuzzy set was also proposed. Finally, derivation of a similarity measure from entropy with the help of total information property was derived. A simple example shows the relation between similarity measure and fuzzy entropy, in which the summation of similarity measure and fuzzy entropy represents a constant value.