期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Power interconnected system clustering with advanced fuzzy C-mean algorithm 被引量:6
1
作者 王洪梅 KIM Jae-Hyung +2 位作者 JUNG Dong-Yean LEE Sang-Min LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第1期190-195,共6页
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m... An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system. 展开更多
关键词 fuzzy C-mean similarity measure distance measure interconnected system CLUSTERING
下载PDF
Fault detection method with PCA and LDA and its application to induction motor 被引量:3
2
作者 JUNG D Y LEE S M +2 位作者 王洪梅 KIM J H LEE S H 《Journal of Central South University》 SCIE EI CAS 2010年第6期1238-1242,共5页
A feature extraction and fusion algorithm was constructed by combining principal component analysis(PCA) and linear discriminant analysis(LDA) to detect a fault state of the induction motor.After yielding a feature ve... A feature extraction and fusion algorithm was constructed by combining principal component analysis(PCA) and linear discriminant analysis(LDA) to detect a fault state of the induction motor.After yielding a feature vector with PCA and LDA from current signal that was measured by an experiment,the reference data were used to produce matching values.In a diagnostic step,two matching values that were obtained by PCA and LDA,respectively,were combined by probability model,and a faulted signal was finally diagnosed.As the proposed diagnosis algorithm brings only merits of PCA and LDA into relief,it shows excellent performance under the noisy environment.The simulation was executed under various noisy conditions in order to demonstrate the suitability of the proposed algorithm and showed more excellent performance than the case just using conventional PCA or LDA. 展开更多
关键词 principal component analysis (PCA) linear discriminant analysis (LDA) induction motor fault diagnosis fusionalgorithm
下载PDF
Quantitative comparison of similarity measure and entropy for fuzzy sets
3
作者 JUNG Dong-yean CHOI Jung-Wook +1 位作者 PARK Wook-Je LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第6期2045-2049,共5页
Comparison and data analysis with the similarity measures and entropy for fuzzy sets were carried out. The distance proportional value between the fuzzy set and the corresponding crisp set was considered by the fuzzy ... Comparison and data analysis with the similarity measures and entropy for fuzzy sets were carried out. The distance proportional value between the fuzzy set and the corresponding crisp set was considered by the fuzzy entropy. The relation between the similarity measure and the entropy for fuzzy set was also analyzed. The fuzzy entropy was reformulated as the dissimilarity measure. Furthermore, crisp set having the minimum uncertainty with respect to the corresponding fuzzy set was also proposed. Finally, derivation of a similarity measure from entropy with the help of total information property was derived. A simple example shows the relation between similarity measure and fuzzy entropy, in which the summation of similarity measure and fuzzy entropy represents a constant value. 展开更多
关键词 similarity measure fuzzy entropy minimum uncertainty quantitative comparison
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部