The oxidation behavior and mechanism of as-received and 30 % cold-rolled alumina-forming austenitic(AFA) steel were investigated in dry air at 700℃.The results show that the mass gain per unit area curves of as-recei...The oxidation behavior and mechanism of as-received and 30 % cold-rolled alumina-forming austenitic(AFA) steel were investigated in dry air at 700℃.The results show that the mass gain per unit area curves of as-received and 30 % cold-rolled steels subject to near-parabolic law before 100 h oxidation time.Two samples both show higher high-temperature oxidation resistance due to the formation of dense Al_(2)O_(3) oxide scale.Gradual spallation of outer scale results in the formation of continuous and dense alumina scale.Dislocations can act as short-circuit diffusion channel for the diffusion of Al from alloy matrix to surface,and also provide nucleation sites for B2-NiAl phase,which ensure the continuous formation of Al_(2)O_(3) scale.展开更多
基金financially supported by the National Natural Science Foundation of China and Shanghai Baosteel Group Company(No. U1960204)the National Natural Science Foundation of China(Nos. 51871042 and 51501034)the Fundamental Research Funds for the Central Universities (No. N2023026)。
文摘The oxidation behavior and mechanism of as-received and 30 % cold-rolled alumina-forming austenitic(AFA) steel were investigated in dry air at 700℃.The results show that the mass gain per unit area curves of as-received and 30 % cold-rolled steels subject to near-parabolic law before 100 h oxidation time.Two samples both show higher high-temperature oxidation resistance due to the formation of dense Al_(2)O_(3) oxide scale.Gradual spallation of outer scale results in the formation of continuous and dense alumina scale.Dislocations can act as short-circuit diffusion channel for the diffusion of Al from alloy matrix to surface,and also provide nucleation sites for B2-NiAl phase,which ensure the continuous formation of Al_(2)O_(3) scale.