Green and efficient NO_(x)removal at low temperature is still desired.NO_(x)removal via non-thermal plasma(NTP)reduction is one of such technique.This work presents the experimental and theoretical study on the NO_(x)...Green and efficient NO_(x)removal at low temperature is still desired.NO_(x)removal via non-thermal plasma(NTP)reduction is one of such technique.This work presents the experimental and theoretical study on the NO_(x)removal via NTP reduction(NTPRD)in dielectric barrier discharge reactor(DBD).The effect of O_(2)molar fraction on NO_(x)species in the outlet of DBD,and effects of NH_(3)/NO_(x)molar ratio and discharge power of DBD on NO_(x)removal efficiency are investigated.Results indicate that anaerobic condition and higher discharge power is beneficial to direct removal of NO_(x),and the NO_(x),removal efficiency can be up to 98.5%under the optimal operating conditions.It is also found that adding NH_(3)is favorable for the reduction of NO_(x),to N_(2)at lower discharge power.In addition,the NO_(x)removal mechanism and energy consumption analysis for the NTPRD process are also studied.It is found that the reduced active species(N^(+),N^(-),N^(+),N_(2)^(*),NH_(2)^(+),etc.)generated in the NTPRD process play important roles for the reduction of NO_(x),to N_(2).Our work paves a novel pathway for NO_(x)removal from anaerobic gas in industrial application.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.21878009 and 21725601).
文摘Green and efficient NO_(x)removal at low temperature is still desired.NO_(x)removal via non-thermal plasma(NTP)reduction is one of such technique.This work presents the experimental and theoretical study on the NO_(x)removal via NTP reduction(NTPRD)in dielectric barrier discharge reactor(DBD).The effect of O_(2)molar fraction on NO_(x)species in the outlet of DBD,and effects of NH_(3)/NO_(x)molar ratio and discharge power of DBD on NO_(x)removal efficiency are investigated.Results indicate that anaerobic condition and higher discharge power is beneficial to direct removal of NO_(x),and the NO_(x),removal efficiency can be up to 98.5%under the optimal operating conditions.It is also found that adding NH_(3)is favorable for the reduction of NO_(x),to N_(2)at lower discharge power.In addition,the NO_(x)removal mechanism and energy consumption analysis for the NTPRD process are also studied.It is found that the reduced active species(N^(+),N^(-),N^(+),N_(2)^(*),NH_(2)^(+),etc.)generated in the NTPRD process play important roles for the reduction of NO_(x),to N_(2).Our work paves a novel pathway for NO_(x)removal from anaerobic gas in industrial application.