期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nat Genet:单细胞分析解开结直肠癌细胞的神秘面纱 被引量:41
1
作者 Huipeng Li, Elise T Courtois, Debarka Sengupta, Yuliana Tan Shyam Prabhakar +16 位作者 Elise T Courtois, Yuliana Tan Paul Robson Debarka Sengupta Kok Hao Chen, Jolene Jie Lin Goh Paul Jongjoon Choi Say Li Kong, Axel M Hillmer Iain Beehuat Tan Clarinda Chua Iain Beehuat Tan Lim Kiat Hon Wah Siew Tan Mark Wong Lawrence J K Wee Iain Beehuat Tan Paul Robson Paul Robson Paul Robson 《现代生物医学进展》 CAS 2017年第15期I0003-I0003,共1页
结合单细胞基因组学和计算机技术,一个研究团队(包括来自杰克逊实验室(JAx)单细胞生物学主任Paul Robson博士在内)鉴定出了11种结直肠癌肿瘤的癌细胞组成及邻近的非癌细胞。这对于更好的肿瘤靶向诊断和治疗很重要。”使用单细胞测... 结合单细胞基因组学和计算机技术,一个研究团队(包括来自杰克逊实验室(JAx)单细胞生物学主任Paul Robson博士在内)鉴定出了11种结直肠癌肿瘤的癌细胞组成及邻近的非癌细胞。这对于更好的肿瘤靶向诊断和治疗很重要。”使用单细胞测序。”JAX科学家、这篇发表在Nature Genetics上的文章共同第一作者Elise Courtois说道。”我们可以根据肿瘤中的细胞组成将结直肠癌进一步分类。因为每种亚型的肿瘤病人生存率存在差别,我们的方法将为肿瘤医生提供更多的关于肿瘤预后和治疗的信息。” 展开更多
关键词 单细胞分析 结直肠癌 癌细胞 NAT 细胞组成 肿瘤病 计算机技术 细胞生物学
原文传递
Review Authorship Attribution in a Similarity Space 被引量:1
2
作者 钱铁云 刘兵 +1 位作者 李青 司建锋 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第1期200-213,共14页
Authorship attribution, also known as authorship classification, is the problem of identifying the authors (reviewers) of a set of documents (reviews). The common approach is to build a classifier using supervised... Authorship attribution, also known as authorship classification, is the problem of identifying the authors (reviewers) of a set of documents (reviews). The common approach is to build a classifier using supervised learning. This approach has several issues which hurts its applicability. First, supervised learning needs a large set of documents from each author to serve as the training data. This can be difficult in practice. For example, in the online review domain, most reviewers (authors) only write a few reviews, which are not enough to serve as the training data. Second, the learned classifier cannot be applied to authors whose documents have not been used in training. In this article, we propose a novel solution to deal with the two problems. The core idea is that instead of learning in the original document space, we transform it to a similarity space. In the similarity space, the learning is able to naturally tackle the issues. Our experiment results based on online reviews and reviewers show that the proposed method outperforms the state-of-the-art supervised and unsupervised baseline methods significantly. 展开更多
关键词 authorship attribution supervised learning similarity space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部