The research on gas hydrate is one of the topics of general interest in the field of energy resource and environment. The South China Sea has favorable conditions for the occurrence and formation of gas hydrate. The p...The research on gas hydrate is one of the topics of general interest in the field of energy resource and environment. The South China Sea has favorable conditions for the occurrence and formation of gas hydrate. The presence of gas hydrate changes acoustic properties of the sedimentary strata and results in the occurrence of bottom simulating reflectors, which makes the multi-channel seismic investigation an important method to identify gas hydrates. First, the paper, based on results of seismic reflection imaging, analyzes the qualitative seismic reflection characteristics of sedimentary strata containing gas hydrate. Some key seismic imaging techniques are also discussed. Next, a pseudo-well is constructed to perform an impedance inversion to get the quantitative velocity structure of the strata since there is no well in the study area. Finally, the velocity field from geophysical inversion is integrated with the geochemical and geophysical data acquired on the Ocean Drilling Program 184 cruise. All information confirms the presence of gas hydrate and shows its spatial distribution.展开更多
基金The research was supported by Hi-tech Research and Development Program of China (2003AA611020-01).
文摘The research on gas hydrate is one of the topics of general interest in the field of energy resource and environment. The South China Sea has favorable conditions for the occurrence and formation of gas hydrate. The presence of gas hydrate changes acoustic properties of the sedimentary strata and results in the occurrence of bottom simulating reflectors, which makes the multi-channel seismic investigation an important method to identify gas hydrates. First, the paper, based on results of seismic reflection imaging, analyzes the qualitative seismic reflection characteristics of sedimentary strata containing gas hydrate. Some key seismic imaging techniques are also discussed. Next, a pseudo-well is constructed to perform an impedance inversion to get the quantitative velocity structure of the strata since there is no well in the study area. Finally, the velocity field from geophysical inversion is integrated with the geochemical and geophysical data acquired on the Ocean Drilling Program 184 cruise. All information confirms the presence of gas hydrate and shows its spatial distribution.