Machine reading comprehension has been a research focus in natural language processing and intelligence engineering.However,there is a lack of models and datasets for the MRC tasks in the anti-terrorism domain.Moreove...Machine reading comprehension has been a research focus in natural language processing and intelligence engineering.However,there is a lack of models and datasets for the MRC tasks in the anti-terrorism domain.Moreover,current research lacks the ability to embed accurate background knowledge and provide precise answers.To address these two problems,this paper first builds a text corpus and testbed that focuses on the anti-terrorism domain in a semi-automatic manner.Then,it proposes a knowledge-based machine reading comprehension model that fuses domain-related triples from a large-scale encyclopedic knowledge base to enhance the semantics of the text.To eliminate knowledge noise that could lead to semantic deviation,this paper uses a mixed mutual ttention mechanism among questions,passages,and knowledge triples to select the most relevant triples before embedding their semantics into the sentences.Experiment results indicate that the proposed approach can achieve a 70.70%EM value and an 87.91%F1 score,with a 4.23%and 3.35%improvement over existing methods,respectively.展开更多
基金partially supported by the National Natural Science Foundation of China (Grant Nos.61332006and 61232002) the National High-Tech Research and Development Program (863Program) of China (2015AA015303),and Infosys.
基金National key research and development program(2020AAA0108500)National Natural Science Foundation of China Project(No.U1836118)Key Laboratory of Rich Media Digital Publishing,Content Organization and Knowledge Service(No.:ZD2022-10/05).
文摘Machine reading comprehension has been a research focus in natural language processing and intelligence engineering.However,there is a lack of models and datasets for the MRC tasks in the anti-terrorism domain.Moreover,current research lacks the ability to embed accurate background knowledge and provide precise answers.To address these two problems,this paper first builds a text corpus and testbed that focuses on the anti-terrorism domain in a semi-automatic manner.Then,it proposes a knowledge-based machine reading comprehension model that fuses domain-related triples from a large-scale encyclopedic knowledge base to enhance the semantics of the text.To eliminate knowledge noise that could lead to semantic deviation,this paper uses a mixed mutual ttention mechanism among questions,passages,and knowledge triples to select the most relevant triples before embedding their semantics into the sentences.Experiment results indicate that the proposed approach can achieve a 70.70%EM value and an 87.91%F1 score,with a 4.23%and 3.35%improvement over existing methods,respectively.