Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ...Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.展开更多
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the in...The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.展开更多
To solve the dimensional limitations of physical models in tests, an equivalent water depth truncated design for a classical SPAR working in 913 m water was investigated. The water depth was reduced to 736m and then t...To solve the dimensional limitations of physical models in tests, an equivalent water depth truncated design for a classical SPAR working in 913 m water was investigated. The water depth was reduced to 736m and then to 552m. As this was done, the mooting line lengths, EA value, and mass per meter were adjusted. Truncation rules and formulas for parameters and truncation factors were proposed. SPAR static characteristics were made to be consistent with those at full water depth. Then further time-domain coupled analysis was carried out for the SPAR when the mooting system experienced waves. The mooring lines were simulated by quasi-static method. Global responses and mooring line forces were found to agree well with test results for a prototype at that water depth. The truncation method proved to be robust and reliable.展开更多
This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles.Based on the selected drilling semi-submersible configuration, the mooring systems were an...This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles.Based on the selected drilling semi-submersible configuration, the mooring systems were analyzed and designed for a range of water depths using different mooring line materials.These were steel wire rope, polyester rope and HMPE (high modulus poly ethylene).The mooring analysis was carried out using the advanced fully coupled time domain analysis method in the computer software package HARP.Diffraction analysis was first applied to solve the hydrodynamic properties of the vessel and then the motion equations of the complete dynamic system including the drilling rig, the mooring lines and risers were developed and solved in the time domain.Applying the advanced analysis method, a matrix of mooring systems was developed for operating in water depths of 1000 m, 1500 m, and 2 000 m using various mooring materials.The development of mooring systems was conducted in accordance with the commonly adopted mooring design code, API RP 2SK and API RP 2SM.Fresh attempts were then made to comparatively evaluate the mooring system's characteristics and global performance.Useful results have been obtained in terms of mooring materials, water depths, and key parameters of mooring configurations.The results provide in-depth insight for the design and operation of deepwater mooring systems in the South China Sea environment.展开更多
The article studies the oscillation features of the water in the square moon pool under the circumstances of wave-flow combined conditions. Comparing with the results of experiments of the square moon pool, a series o...The article studies the oscillation features of the water in the square moon pool under the circumstances of wave-flow combined conditions. Comparing with the results of experiments of the square moon pool, a series of studies reveal that the water piston oscillation phenomenon is quite similar to that of the circular one. Two types of oscillation are exhibited under different incoming wave periods, i.e. self-excited oscillation and forced oscillation. The difference between the circular and square moon pool is that the attack angle makes greater influences on the square one. "Beating phenomenon" is also found in the square moon pool which is not mentioned of the circular one.展开更多
Wind power has made rapid progress and should gain significance as an energy resource,given growing interest in renewable energy and clean energy.Offshore wind energy resources have attracted significant attention,as,...Wind power has made rapid progress and should gain significance as an energy resource,given growing interest in renewable energy and clean energy.Offshore wind energy resources have attracted significant attention,as,compared with land-based wind energy resources,offshore wind energy resources are more promising candidates for development.Sea winds are generally stronger and more reliable and with improvements in technology,the sea has become a hot spot for new designs and installation methods for wind turbines.In the present paper,based on experience building offshore wind farms,recommended foundation styles have been examined.Furthermore,wave effects have been investigated.The split installation and overall installation have been illustrated.Methods appropriate when installing a small number of turbines as well as those useful when installing large numbers of turbines were analyzed.This investigation of installation methods for wind turbines should provide practical technical guidance for their installation.展开更多
This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a t...This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.展开更多
The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in...The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.展开更多
This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated pla...This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. For the hydroelastic analysis, the fluid is assumed to be ideal and its motion is irrotational so that a velocity potential exists. The VLFS is modeled as an elastic plate according to the classical thin plate theory. The fluid-structure interaction problem is separated into conventional hydrodynamics and structure dynamics by using modal expansion method in the frequency-domain. It involves, firstly, the deflection of the VLFS, which is expressed by a superposition of modal functions and corresponding modal amplitudes. Then the boundary element method is used to solve the integral equations of diffraction and radiation on the body surface for the velocity potential, whereas the vibration equation is solved by the Galerkin's method for modal amplitudes, and then the deflection is obtained by the sum of multiplying modal functions with modal amplitudes. This study examines the effects of the width and location of the non-perforated horizontal plates on the hydroelastic response of the VLFS, then the performance of perforated plates is investigated to reduce the motion near the fore-end of the VLFS. Considering the advantages and disadvantages of submerged plates without and with cylindrical holes, we propose a simple anti-motion device, which is a combination of a pair of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. The effectiveness of this device in reducing the deformation and bending moment of the VLFS has been confirmed, and is compared with the results in cases without and with the submerged horizontal plates by the analysis in this paper.展开更多
Parametric resonance can lead to dangerously large rolling motions, endangering the ship, cargo and crew. The QR-faetorization method for calculating (LCEs) Lyapunov Characteristic Exponents was introduced; parametr...Parametric resonance can lead to dangerously large rolling motions, endangering the ship, cargo and crew. The QR-faetorization method for calculating (LCEs) Lyapunov Characteristic Exponents was introduced; parametric resonance stability of ships in longitudinal waves was then analyzed using LCEs. Then the safe and unsafe regions of target ships were then identified. The results showed that this method can be used to analyze ship stability and to accurately identify safe and unsafe operating conditions for a ship in longitudinal waves.展开更多
The global responses of an innovative deep draft platform are investigated using catenary, semi-taut, and taut mooring models, respectively. The three mooring systems have the same arrangements and similar static rest...The global responses of an innovative deep draft platform are investigated using catenary, semi-taut, and taut mooring models, respectively. The three mooring systems have the same arrangements and similar static restoring force characteristics. The dynamic coupling effects between the platform and the mooring systems are calculated in the time domain. Free-decay and 3-h simulations are conducted under 1-year and 100-year return period environmental conditions in the South China Sea. The mooring damping contributions, the response characteristics, and the mooring line tensions are investigated.展开更多
Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vor...Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.展开更多
The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material p...The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material properties, uncertainty of the calculation model and machining errors. Correlations among failure modes must be considered with the structural reliability of stiffened cylindrical shells. However, the traditional method cannot consider the correlations effectively. The aim of this study is to present a method of reliability analysis for stiffened cylindrical shells which considers the correlations among failure modes. Firstly, the joint failure probability calculation formula of two related failure modes is derived through use of the 2D joint probability density function. Secondly, the full probability formula of the tandem structural system is given with consideration to the correlations among failure modes. At last, the accuracy of the system reliability calculation is verified through use of the Monte Carlo simulation. Result of the analysis shows the failure probability of stiffened cylindrical shells can be gained through adding the failure probability of each mode.展开更多
In order to assess the possible collision effect, a numerical simulation for the upper module and spar platlbrm docking at the speed of 0.2 m/s was conducted by using the software ANSYS/LS-DYNA, and the time history o...In order to assess the possible collision effect, a numerical simulation for the upper module and spar platlbrm docking at the speed of 0.2 m/s was conducted by using the software ANSYS/LS-DYNA, and the time history of the collision force, energy absorption and structural defonamtion during the collision was described. The purpose was to ensure that the platlbrm was safely put into operation. Furthermore, this paper analyzes different initial velocities and angles on the Von Mises stress and collision resultant force during the docking collision. The results of this paper showed that the docking could be conducted with higher security. The data in this paper can provide useful references for the determination of the upper module's offshore hoisting scheme and practical construction by contrasting the numerical simulation results of the parameters on the docking collision.展开更多
This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure(VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direc...This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure(VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy’s law. The hybrid finite element-boundary element(FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves.Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.展开更多
The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (...The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade's deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5).展开更多
A novel numerical piston-type wave-maker toolbox for the OpenFOAM is developed and demonstrated in this paper. This toolbox is implemented in C++ for improving the solutions of nonlinear wave problems in the field of ...A novel numerical piston-type wave-maker toolbox for the OpenFOAM is developed and demonstrated in this paper. This toolbox is implemented in C++ for improving the solutions of nonlinear wave problems in the field of hydrodynamics. As a toolbox that generates waves using the piston-type method only, it contains several frequently used functions, including the generation and the absorption of waves of various forms, an active absorption system and the porous media flow. Furthermore, to illustrate the operability of the toolbox, some validations and applications are presented, including the regular waves, the irregular waves, and the solitary waves. In each case, a satisfactory agreement is obtained in comparison with the published experimental or theoretical results,so this toolbox may be applied with a considerable confidence.展开更多
The wind energy resource is considerably rich in the deep water of China South Sea,where wind farms have to face the challenge of extreme typhoon events.In this work,the typhoon effect on the aerodynamic performance o...The wind energy resource is considerably rich in the deep water of China South Sea,where wind farms have to face the challenge of extreme typhoon events.In this work,the typhoon effect on the aerodynamic performance of the 5MW OC3-Hywind floating offshore wind turbine(FOWT)system has been investigated,based on the Aero-Hydro-Servo-Elastic FAST code.First,considering the full field observation data of typhoon“Damrey”is a long duration process with significant turbulence and high wind speed,so one 3-h representative truncated typhoon wind speed time history has been selected.Second,the effects of both the(variable-speed and collective-pitch)control system of NREL 5 MW wind turbine and the motion of the floating platform on the blade aerodynamic performance of the FOWT system during the representative typhoon time history has been investigated,based on blade element momentum(BEM)theory(coupled with potential theory for the calculation of the hydrodynamic loads of the Spar platform).Finally,the effects of different wind turbine control strategies,control parameter(KP-KI)combinations,wave heights and parked modes on the rotor aerodynamic responses of the FOWT system have been clarified.The extreme typhoon event can result in considerably large extreme responses of the rotor thrust and the generated power due to the possible blade pitch angle error phenomenon.One active-parked strategy has been proposed for reducing the maximum aerodynamic responses of the FOWT system during extreme typhoon events.展开更多
基金funded by the Key Technology Research and Development Program(Nos.2022YFB4201301,and 2022YFB4201304)the National Natural Science Foundation of China(Nos.52101333,52071058,51939002,and 52071301)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ21E090009)supported by the Natural Science Foundation of Liaoning Province(No.2022-KF-18-01)the special funds for Promoting High-Quality Development from the Department of Natural Resources of Guangdong Province(No.GDNRC[2020]016).
文摘Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.
基金supported by the National Natural Science Foundation of China(Grant No.51106034)the Central Universities Fundamental Research Foundation(Grant No.HEUCFR1104)the Marine Renewable Energy Special Foundation(Grant Nos.ZJME2010CY01 and ZJME2010GC01)
文摘The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.
基金Supported by China National 111 Project Under Grant No.B07019
文摘To solve the dimensional limitations of physical models in tests, an equivalent water depth truncated design for a classical SPAR working in 913 m water was investigated. The water depth was reduced to 736m and then to 552m. As this was done, the mooting line lengths, EA value, and mass per meter were adjusted. Truncation rules and formulas for parameters and truncation factors were proposed. SPAR static characteristics were made to be consistent with those at full water depth. Then further time-domain coupled analysis was carried out for the SPAR when the mooting system experienced waves. The mooring lines were simulated by quasi-static method. Global responses and mooring line forces were found to agree well with test results for a prototype at that water depth. The truncation method proved to be robust and reliable.
基金Supported by China National 111 Project under Grant No.B07019
文摘This paper addresses the need for systematic evaluation of the station keeping systems of deepwater drilling semi-submersibles.Based on the selected drilling semi-submersible configuration, the mooring systems were analyzed and designed for a range of water depths using different mooring line materials.These were steel wire rope, polyester rope and HMPE (high modulus poly ethylene).The mooring analysis was carried out using the advanced fully coupled time domain analysis method in the computer software package HARP.Diffraction analysis was first applied to solve the hydrodynamic properties of the vessel and then the motion equations of the complete dynamic system including the drilling rig, the mooring lines and risers were developed and solved in the time domain.Applying the advanced analysis method, a matrix of mooring systems was developed for operating in water depths of 1000 m, 1500 m, and 2 000 m using various mooring materials.The development of mooring systems was conducted in accordance with the commonly adopted mooring design code, API RP 2SK and API RP 2SM.Fresh attempts were then made to comparatively evaluate the mooring system's characteristics and global performance.Useful results have been obtained in terms of mooring materials, water depths, and key parameters of mooring configurations.The results provide in-depth insight for the design and operation of deepwater mooring systems in the South China Sea environment.
基金support of "111" project which was from China Education Department( No. B07019)
文摘The article studies the oscillation features of the water in the square moon pool under the circumstances of wave-flow combined conditions. Comparing with the results of experiments of the square moon pool, a series of studies reveal that the water piston oscillation phenomenon is quite similar to that of the circular one. Two types of oscillation are exhibited under different incoming wave periods, i.e. self-excited oscillation and forced oscillation. The difference between the circular and square moon pool is that the attack angle makes greater influences on the square one. "Beating phenomenon" is also found in the square moon pool which is not mentioned of the circular one.
基金Supported by 111 Project Foundation under Grant No.B07019the National Natural Science Foundation of China under Grand No.50979020
文摘Wind power has made rapid progress and should gain significance as an energy resource,given growing interest in renewable energy and clean energy.Offshore wind energy resources have attracted significant attention,as,compared with land-based wind energy resources,offshore wind energy resources are more promising candidates for development.Sea winds are generally stronger and more reliable and with improvements in technology,the sea has become a hot spot for new designs and installation methods for wind turbines.In the present paper,based on experience building offshore wind farms,recommended foundation styles have been examined.Furthermore,wave effects have been investigated.The split installation and overall installation have been illustrated.Methods appropriate when installing a small number of turbines as well as those useful when installing large numbers of turbines were analyzed.This investigation of installation methods for wind turbines should provide practical technical guidance for their installation.
基金Suppirted by the Programme of Introducing Talents of Discipline to Universities(B07019)
文摘This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.
基金financially supported by the National Natural Science Foundation of China(Grant No.51221961)
文摘The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.
基金the National Science Foundation for Creative Re-search Groups of China (Grant No.50921001) for supporting this work
文摘This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. For the hydroelastic analysis, the fluid is assumed to be ideal and its motion is irrotational so that a velocity potential exists. The VLFS is modeled as an elastic plate according to the classical thin plate theory. The fluid-structure interaction problem is separated into conventional hydrodynamics and structure dynamics by using modal expansion method in the frequency-domain. It involves, firstly, the deflection of the VLFS, which is expressed by a superposition of modal functions and corresponding modal amplitudes. Then the boundary element method is used to solve the integral equations of diffraction and radiation on the body surface for the velocity potential, whereas the vibration equation is solved by the Galerkin's method for modal amplitudes, and then the deflection is obtained by the sum of multiplying modal functions with modal amplitudes. This study examines the effects of the width and location of the non-perforated horizontal plates on the hydroelastic response of the VLFS, then the performance of perforated plates is investigated to reduce the motion near the fore-end of the VLFS. Considering the advantages and disadvantages of submerged plates without and with cylindrical holes, we propose a simple anti-motion device, which is a combination of a pair of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. The effectiveness of this device in reducing the deformation and bending moment of the VLFS has been confirmed, and is compared with the results in cases without and with the submerged horizontal plates by the analysis in this paper.
文摘Parametric resonance can lead to dangerously large rolling motions, endangering the ship, cargo and crew. The QR-faetorization method for calculating (LCEs) Lyapunov Characteristic Exponents was introduced; parametric resonance stability of ships in longitudinal waves was then analyzed using LCEs. Then the safe and unsafe regions of target ships were then identified. The results showed that this method can be used to analyze ship stability and to accurately identify safe and unsafe operating conditions for a ship in longitudinal waves.
基金funded by the National Basic Research Program of China (Grant Nos.2011CB013702 and 2011 CB013703)the National Natural Science Foundation of China (Grant Nos.51209037 and 51221961)the China Postdoctoral Science Foundation Project (Grant No.2013T60287)
文摘The global responses of an innovative deep draft platform are investigated using catenary, semi-taut, and taut mooring models, respectively. The three mooring systems have the same arrangements and similar static restoring force characteristics. The dynamic coupling effects between the platform and the mooring systems are calculated in the time domain. Free-decay and 3-h simulations are conducted under 1-year and 100-year return period environmental conditions in the South China Sea. The mooring damping contributions, the response characteristics, and the mooring line tensions are investigated.
基金financially supported by the National Natural Science Foundation of China(Grant No.51509045)
文摘Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.
基金The Defence Advance Research Program of Science and Technology of Ship Industry(Grant No.11J1.3.1)
文摘The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material properties, uncertainty of the calculation model and machining errors. Correlations among failure modes must be considered with the structural reliability of stiffened cylindrical shells. However, the traditional method cannot consider the correlations effectively. The aim of this study is to present a method of reliability analysis for stiffened cylindrical shells which considers the correlations among failure modes. Firstly, the joint failure probability calculation formula of two related failure modes is derived through use of the 2D joint probability density function. Secondly, the full probability formula of the tandem structural system is given with consideration to the correlations among failure modes. At last, the accuracy of the system reliability calculation is verified through use of the Monte Carlo simulation. Result of the analysis shows the failure probability of stiffened cylindrical shells can be gained through adding the failure probability of each mode.
基金Supported by the Programme of Introducing Talents of Discipline to Universities(Grant No.B07019)
文摘In order to assess the possible collision effect, a numerical simulation for the upper module and spar platlbrm docking at the speed of 0.2 m/s was conducted by using the software ANSYS/LS-DYNA, and the time history of the collision force, energy absorption and structural defonamtion during the collision was described. The purpose was to ensure that the platlbrm was safely put into operation. Furthermore, this paper analyzes different initial velocities and angles on the Von Mises stress and collision resultant force during the docking collision. The results of this paper showed that the docking could be conducted with higher security. The data in this paper can provide useful references for the determination of the upper module's offshore hoisting scheme and practical construction by contrasting the numerical simulation results of the parameters on the docking collision.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51490672,51579122 and51609109)the Natural Science Foundation of Jiangsu Province(Grant No.BK20160556)+1 种基金the University Natural Science Research Project of Jiangsu Province(Grant No.16kjb70003)the Key Lab Foundation for Advanced Manufacturing Technology of Jiangsu Province(Grant No.CJ1506)
文摘This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure(VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy’s law. The hybrid finite element-boundary element(FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves.Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.
基金supported by the National Natural Science Foundation of China (Nos. 51209060 and 51106034)the ‘111’ Project Foundation from Ministry of Education and State Administration of Foreign Experts Affairs (No. B07019), Chinathe National Special Foundation for Ocean Energy (No. GHME2010CY01)
文摘The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade's deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5).
基金Project supported by the National Natural Science Foundation of China (Grant No. 51579034the Public Science and Technology Research Funds Projects of Ocean (Grant No. 201405025).
文摘A novel numerical piston-type wave-maker toolbox for the OpenFOAM is developed and demonstrated in this paper. This toolbox is implemented in C++ for improving the solutions of nonlinear wave problems in the field of hydrodynamics. As a toolbox that generates waves using the piston-type method only, it contains several frequently used functions, including the generation and the absorption of waves of various forms, an active absorption system and the porous media flow. Furthermore, to illustrate the operability of the toolbox, some validations and applications are presented, including the regular waves, the irregular waves, and the solitary waves. In each case, a satisfactory agreement is obtained in comparison with the published experimental or theoretical results,so this toolbox may be applied with a considerable confidence.
基金This research was supported by the Fundamental Re-search Funds for the Central Universities and National Nat-ural Science Foundation of China(grant NO.51709040,51761135011,51651902).
文摘The wind energy resource is considerably rich in the deep water of China South Sea,where wind farms have to face the challenge of extreme typhoon events.In this work,the typhoon effect on the aerodynamic performance of the 5MW OC3-Hywind floating offshore wind turbine(FOWT)system has been investigated,based on the Aero-Hydro-Servo-Elastic FAST code.First,considering the full field observation data of typhoon“Damrey”is a long duration process with significant turbulence and high wind speed,so one 3-h representative truncated typhoon wind speed time history has been selected.Second,the effects of both the(variable-speed and collective-pitch)control system of NREL 5 MW wind turbine and the motion of the floating platform on the blade aerodynamic performance of the FOWT system during the representative typhoon time history has been investigated,based on blade element momentum(BEM)theory(coupled with potential theory for the calculation of the hydrodynamic loads of the Spar platform).Finally,the effects of different wind turbine control strategies,control parameter(KP-KI)combinations,wave heights and parked modes on the rotor aerodynamic responses of the FOWT system have been clarified.The extreme typhoon event can result in considerably large extreme responses of the rotor thrust and the generated power due to the possible blade pitch angle error phenomenon.One active-parked strategy has been proposed for reducing the maximum aerodynamic responses of the FOWT system during extreme typhoon events.